
A Physics-Based Simulator to Facilitate
Reinforcement Learning in the RHIC
Accelerator Complex

October 13th, 2023

L.K. Nguyen, K.A. Brown, M.R. Costanzo, Y. Gao, M. Harvey, J.P.
Jamilkowski, J.T. Morris, V. Schoefer

RHIC Accelerator Complex at BNL

2

s

• Bunches merge in Booster for
injection into the Alternating
Gradient Synchrotron (AGS)

• Bunches merge in AGS for
injection into the Relativistic
Heavy Ion Collider (RHIC)

Motivation

3

Good bunch merging is crucial for operations but not trivial to achieve. Machine
learning (ML) provides a promising tool for improving bunch merges. BUT:
• Real machine time for ML development can be very hard to come by.

Booster & AGS are part of the accelerator chain for multiple programs, and they are often in
operational use when not supplying RHIC with beam.

• Real machine time for ML development is expensive and has opportunity costs.
Downtime is generally allotted to maintenance and/or needed repairs. Meanwhile, part of the
ML development cycle is purely software-related (e.g., debugging).

Some ML approaches, such as reinforcement learning (RL), do not learn
machine parameters and are therefore amenable to other development paths.

Replace accelerator, diagnostics,
and controls with simulator*

* In this case, written in Python

Real Environment

4

• To diagnose a merge, a wall
current monitor (WCM) generates
a voltage vs. time signal. Signal
traces are subsequently stacked
on a scope to create a mountain
range plot.

• Each trace is separated in time
from the one before it by a certain
number of accelerator periods
(referred to herein as N turns).

• Scope has usual settable
properties (e.g., timebase, trigger,
etc.).

Real mountain range data showing an overall 6-to-1 merge
(6-to-2 merge followed by 2-to-1 merge) in Booster

Real Environment, cont.

5

• For the merge, RF gymnastics are
performed via different RF harmonics—
but not necessarily different physical
cavities.

• Booster & AGS differ in number of
physical cavities and can differ in
harmonics and merge pattern. They
naturally differ in energy, slip factor, and
other beam/accelerator qualities.

• Voltage and phase are the available
knobs for a given RF harmonic.

• Knobs are controlled by specifying device
name, parameter, and new value.

WCM

Controls
System

Device name,
parameter,
value

2D scope signal
(time, voltage)
every N turns

RF
cavity

Cartoon representation of accelerator with WCM,
RF cavities (arbitrary number), and input/output

Machine

(arbitrary time)

6

Simulator & Code Overview

(Note that implemented variables and functions constitute
an ever-growing list as the simulator evolves)

Physics-based simulator

Bunch Merge Simulator
Workflow

7

Real Machine

Real WCM

User,
Program,
ML/RL,

Etc.

Phase

Voltage

2D scope signal
(time, voltage)
every N turns WCM

object

User, Program,
ML/RL, Etc.

Phase

Voltage

2D scope signal
(time, voltage)
every N turns

Accelerator object
RF Cavity object

(inner class)

Beam
object Phase-

Space

Phase-space (every turn)

Diagnostics
simulator
(called as
needed)

(arbitrary time)

(arbitrary time)

.measure(beam)

RF
cavitiesBunches

Designed so that these
blocks may be interchanged

Object-Oriented Programming

8

Example of six 80-nanosecond bunches constituting one full orbit
(i.e., 12π rads in phase) at 400 kHz revolution frequency. Each
bunch is a 2D Gaussian distribution of 10,000 particles (variable).

Beam Object

Main Methods

.collapse()

.beamLoss(loss)

.phaseShift(shift)

Instantiation Arguments

Covariance and bunch variation settings can be combined
arbitrarily. Phase resolution and σ of Gaussian filter affect phase-
space projection for time signal (see later slide).

• Particles per bunch
• Bunches in orbit
• Signal strength
• Bunch length (ns)
• Momentum spread
• Covariance
• Particle number variation
• Bunch length variation
• Bunch timing variation
• Phase resolution
• Gaussian filter σ

9

Particle number variation

Bunch length variation Bunch timing variation

Covariance

10

Phase-space projection
Phase-space projection is the first step in going from 2D phase space to a voltage vs. time signal.
The Beam().collapse() method creates a particle histogram (phase resolution for bins can be set)
that is smoothed via a Gaussian filter and then scaled via the signal strength parameter. Phase is
converted to time via the revolution frequency.

Close-up of one bunch projected for different Gaussian filter sigmas

11

All bunches as phase signal

• Note how signal strength parameter
(20 mV in example) is used for y-axis

All bunches as time signal

Phase to time signal

• 400 kHz revolution frequency → 2.5
μs for one turn

12

WallCurrentMonitor Object

Main Methods

.measure(beam)

.display()

.clear()

Instantiation Arguments

• Sampling rate
• Number of samples

per acquisition
• Turns between

acquisitions
• Number of acquisitions
• Trigger delay
• Bit resolution of scope
• Acquisition noise

Main Attributes

.acquisition

.accumulator

Imparts acquisition noise and other simulated scope
properties. Accumulates traces for mountain range plot.

13

Available Outputs

Phase as x-axis, momentum spread as y-axis:
phase, delta = beam.phase_space

This is the signal used by the Accelerator object

Note that beam.raw_time_signal and beam.time_signal will be identical if no
additional acquisition noise or settings are added

Simulator provides four 2D NumPy arrays as Beam object attributes:

Phase as x-axis, smoothed bunch count as y-axis:
phase, phase_train = beam.phase_signal

Intermediate step to generating time signal

Time as x-axis, phase signal amplitude scaled to voltage:
time, voltage = beam.raw_time_signal

Passed to WCM object for simulated diagnostics

Time as x-axis, simulated WCM output:
time, voltage = beam.measured_signal

Serves as traces and the primary output for ML

14

Physics Simulation and
the Accelerator Object

Evolution of Beam object is handled by
Accelerator object and takes place in
phase space according to longitudinal
phase-space mapping equations:

𝛿𝑛+1 = 𝛿𝑛 + ෍

𝑖

𝑙𝑒𝑛(ℎ)
𝑍𝑒𝑉𝑖

𝛽2𝐸
sin 𝜑𝑛,𝑖 − sin 𝜑𝑠,𝑖

𝜑𝑛+1 = 𝜑𝑛 + 2𝜋ℎ𝑁𝜂𝛿𝑛+1

• ℎ is harmonic of revolution frequency
• ℎ𝑁 is base harmonic used for accounting
• Lump-element model means 𝜑𝑠 for each

harmonic can be approximated by 𝜑𝑖 (i.e.,
set phase offset)

ℎ = h_list, 𝑉 = v_list, 𝜑 = ph_list

On-momentum phase-space ellipses with constant voltage

Phase wrapping (full orbit tracking)

Sanity checks:

15

Accelerator & RF Cavity Object
Accelerator object

RF Cavity object
(inner class)

• .cavity.voltages and .cavity.phases change
during execution according to .cavity.v_increment
and .cavity.ph_increment , respectively

machine.cavity.harmonics = h_list (e.g., [1,2,3,6])
machine.cavity.voltages = v_list (in kV, e.g., [0,0,0,2.5])
machine.cavity.phases = ph_list (in rads, e.g., [0,0,0,0])

machine = Accelerator(...,h_list,v_list,

 ph_list,v_names,ph_names,...)

Instantiation Arguments

• Species
• Particle rest energy
• Charge number Z
• Machine name
• Energy
• Slip factor
• Revolution frequency
• Merge harmonics
• Initial RF voltages
• Voltage device names
• Initial RF phases
• Phase device names
• Voltage noise
• Phase noise

Main
Methods

.loadCommands(commands)

.unloadCommands()

.simulate(beam,turns)

.cavity.getValue(parameter)

.cavity.setValue(parameter,value)

.reset(attribute)

Main Attributes

.turn

.line

.action

.cavity.harmonics

.cavity.voltages

.cavity.phases

.cavity.params

.cavity.v_increment

.cavity.ph_increment

• v_names and ph_names contain device+parameter names per Controls
System syntax (see next slide)

• .action signals new line of increments

16

Device/Controls Architecture
For merge via scripted program example:

• machine.cavity.setValue(setting,value)
is used to change voltage or phase

• setting is a list of the form:
[‘Device name’, ‘Device parameter’]

• List is mapped to .voltages or .phases
accordingly and changed to value for use
in subsequent iterations of simulator

Time is converted to turn number and
unique turn numbers create a new line

in .action

v_names = [['Cavity1', 'h1_VoltageSetpoint'],

 ['Cavity2', 'h2_VoltageSetpoint'],

 ['Cavity3', 'h3_VoltageSetpoint'],

 ['Cavity4', 'h6_VoltageSetpoint']]

ph_names = [['RFSupply1', 'h1_PhaseOffset'],

 ['RFSupply2', 'h2_PhaseOffset'],

 ['RFSupply3', 'h3_PhaseOffset'],

 ['RFSupply4', 'h6_PhaseOffset']]

Index in h_list will correspond to row in
v_names and ph_names

Example:

Specify each command as a row in the following format:

[Time in ms, ['Device name', 'Parameter’],value]

Voltage in kV, phase in rads

merge_commands = [

 [0, ['Cavity4', 'h6_VoltageSetpoint'], 2.5],

 [8, ['Cavity4', 'h6_VoltageSetpoint'], 1.25],

 [8, ['Cavity3', 'h3_VoltageSetpoint'], 0.8335],

 [16, ['Cavity4', 'h6_VoltageSetpoint'], 0],

 [16, ['Cavity3', 'h3_VoltageSetpoint'], 1.25],

 ...

 [48, ['Cavity3', 'h3_VoltageSetpoint'], 0.35],

 [48, ['Cavity1', 'h1_VoltageSetpoint'], 1.46045],

 [60, ['Cavity3', 'h3_VoltageSetpoint'], 0],

 [60, ['Cavity2', 'h2_VoltageSetpoint'], 0.730225],

 [72, ['Cavity2', 'h2_VoltageSetpoint'], 0]

]

17

Data Structure

array([[1.66002656e-09, 4.98007968e-09, 8.30013280e-09,

 1.16201859e-08, 1.49402390e-08, 1.82602922e-08,

 ...

 2.48837981e-06, 2.49169987e-06, 2.49501992e-06,

 2.49833997e-06],

 [7.66208925e-01, 7.87920809e-01, 4.26911847e-01,

 2.21427015e-01, -8.54739956e-02, 4.55331427e-01,

 ...

 8.50578511e-01, 7.87545251e-01, 5.94906358e-02,

 9.82494844e-01]])

[16, ['Cavity4', 'h6_VoltageSetpoint'], 1.25]

[8, ['RFSupply4', 'h6_PhaseOffset’], 0.05]

OUTPUT from simulator

INPUTS to simulator

2D array:
[time, voltage]

List with time (ms) into merge
to reach new setpoint, device
name, device parameter, and

new setpoint value

Physics-based simulator

WCM
object

User, Program,
ML/RL, Etc.

Phase

Voltage

Accelerator object

RF Cavity object

Beam
object Phase-

Space

Phase-space

Diagnostics
simulator

.measure(beam)

Execution

18

INSTANTIATION

SIMULATION
(programmed merge)

machine.loadCommands(merge_commands)

wcm.measure(beam) # Log initial beam

for i in range(N_measurements):

 machine.simulate(beam, wcm.turns)

 wcm.measure(beam)

wcm.display() # Mountain range plot

wcm = WallCurrentMonitor(N_turns,N_samples,N_length,wcm_noise,

 trigger_delay,bit_res)

beam = Beam(N_bunches,N_particles,cov,bunch_amp_noise,sigma_noise,

 sigma_ph,phase_jitter,signal_strength,b_num,gauss_sigma)

machine = Accelerator(machine_name,species,E_0,Z,E,eta,h_list,

 v_list,ph_list,v_names,ph_names,v_noise,

 rf_ph_noise)

19

Example Results

c.f. real mountain range
data for a 3-to-1 merge in
Booster during Run 20:

Conclusion & Future Work

20

• We have created a physics-based simulator in Python that mimics our bunch
merge environment and diagnostics by combining longitudinal phase-space
mapping and phase-space projection for time signal replication

• A diagnostics simulator is included in the framework
• Due to its authentic data and Controls structure, as well as options for injecting

noise, the simulator can be used for RL development for improving bunch merges
• Other envisaged uses include training, troubleshooting, and other systems investigations

• The simulation environment will be expanded to accept console input
• This is expected to improve RL development/performance since the algorithm would not

need to wait until the very end of the merge for feedback

• It is likely that the simulate method (or a version of it) will be rewritten to perform
the computationally intensive phase-space mapping portion in C for full-scale
simulations (>>10,000 particles per bunch) when GPUs are insufficient/unavailable

21

Thank you!

Questions?

	Slide 1: A Physics-Based Simulator to Facilitate Reinforcement Learning in the RHIC Accelerator Complex
	Slide 2: RHIC Accelerator Complex at BNL
	Slide 3: Motivation
	Slide 4: Real Environment
	Slide 5: Real Environment, cont.
	Slide 6: Simulator & Code Overview
	Slide 7: Bunch Merge Simulator Workflow
	Slide 8: Beam Object
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Execution
	Slide 19
	Slide 20: Conclusion & Future Work
	Slide 21: Thank you!

