
Integrating tools to aid the automation of PLC

development within the TwinCAT environment

N. Mashayekh, B. Baranasic, M. Bueno, T. Freyermuth, P. Gessler, S. T. Huynh, N. Jardón Bueno, J. Tolkiehn, L. Zanellatto

European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany

European XFEL GmbH, Navid Mashayekh, Holzkoppel 4, 22869 Schenefeld, Germany, Phone +49 40 8998-6815, Navid.mashayekh@xfel.eu

www.xfel.eu

Introduction

Whilst there were tools [1] previously developed in order to aid

Programmable Logic Controller (PLC) project generation at the

European XFEL, overtime, these tools became harder to manage.

Many of the tools were developed in an array of programming

languages, and require the PLC developers to become adept in

multiple Integrated Development Environment (IDE) and languages.

In turn, in order to enhance or add to an existing tool or function, edits

would have had to be made across the multiple applications to

ensure consistency. This approach can work if there is a well

integrated team, however, also caused bottle necks and had a high

dependency on all of the tools being kept up-to-date.

A new approach was envisioned where all of the function previously

being performed either manually, or via some means of automation,

was collated together into a Single Point of Contact (SPoC). Within

the backdrop of TwinCAT environment, it was a logical step to build

upon this platform by integrating this new functionality and interface

into TwinCAT itself via the means of Visual Studio extensions.

Developing Extensions

There are multiple alternatives to customise and enhance the

functionality of the Visual Studio to their specific needs. Amongst all

of the available customisations, the tool window and toolbar button

are two which are noteworthy.

Toolbar button: toolbar buttons (Fig.1,2) are UI elements placed

on toolbars within Visual Studio. These buttons trigger specific

actions or commands when clicked, therefore they are suited for

simpler actions who do not need complex user interface.

Tool window: a tool window (Fig. 3) is a dockable window in

Visual Studio that can host various controls and components,

offering a customized workspace within the Visual Studio. To

create a tool window, typically a WPF user interface is defined

which implements the necessary logic to handle user interactions.

References

[1] S. T. Huynh et al., "AUTOMATIC GENERATION OF PLC PROJECTS USING

STANDARDIZED COMPONENTS AND DATA MODELS“ICALEPCS2019, New York, NY,

USA, pp 1532-1537.

Fig.1: TwinCAT3 default toolbar buttons

Fig.2: Custom toolbar button Fig.3: Custom tool window

GENERATION OF PLC CODE USING EXTENSIONS

There are two fundamental approaches to generating PLC code via

the Beckhoff Automation Interface.

Develope or generate new Program Organization Units (POUs) to

provide new functionality. (Fig. 4)

Utilise and modify existing POUs. (Fig. 5)

Fig.5: Injecting a new EtherCAT master and devices from EPLAN exports to the Hardware tree

Fig.4: Generating a new List Function Block for a different data type

Future Extensions

By integrating the capability to install in-house and required external

libraries, our extension aims to create a seamless development

experience. Parsing project configuration data ensures that the

extension understands the specific requirements of each project,

allowing it to intelligently utilize these libraries.

