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The ATLAS (LHC detector) Liquid Argon Calorimeter is classified as a critical cryogenic system due to its requirement for uninterrupted operation. The
system has been in continuous nominal operation since the start-up of the LHC, operating with very high reliability and availability. Over this period,
control system maintenance was focused on the most critical hardware and software interventions, without direct impact on the process control
system. Consequently, after several years of steady state operation, the process control system became obsolete (reached End of Life), requiring
complex support and without the possibility of further improvements. This led to a detailed review towards a complete upgrade of the PLC hardware
and process control software. To ensure uninterrupted operation, longer equipment lifecycle, and further system maintainability, the latest
technology was chosen.
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Software Re-implementation and Testing Deployment
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phases and various scenarios were simulated to ensure that the software performs
as intended and meets the specified functional requirements.
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The defined upgrade strategy, along with the substantial effort in all project phases, allowed for a smooth and problem- ; The LAr calorimeter control
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free upgrade of one of the most critical cryogenic control systems at CERN. Thanks to all the implemented improvements, ‘ upgraded in February 2023,
the LAr control system has become more robust and immune to PLC crashes, simultaneously increasing the overall it Approximately six hours were
reliability of the cryogeni tem. Any future modifications to the control logic can be easily implemented due to th e E—— needed to replace each PLC
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automation of software production. With the help of UCPC6, control system support and maintenance can be efficiently ——— then, no issues have been
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Deployment workflow been decommissioned.
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