
Improving the performance of Taranta:
analysis of memory requests and
implementation of the solution
Matteo Canzari, Hélder Ribeiro, Ajaykumar Dubey, Athos Georgiou, Valentina Alberti, Yimeng Li,
Vincent Hardion, Mikel Eguiraun, Johan Forsberg

ABSTRACT

Taranta is a software suite for generating graphical interfaces for Tango Controls software, currently adopted by MaxIV for scientific
experiment usage, SKA during the current construction phase for the development of engineering interfaces for device debugging, and
other institutions. A key feature of Taranta is the ability to create customizable dashboards without writing code, making it easy to
create and share views among users by linking the dashboards to their own tango devices. However, due to the simplicity and
capabilities of Taranta's widgets, more and more users are creating complex dashboards, which can cause client-side resource
problems. Through an analysis of dashboards, we have found that excessive memory requests are generated by a large amount of
data. In this article, we report on the process we believe will help us solve this performance issue. Starting with an analysis of the
existing architecture, the issues encountered, and performance tests, we identify the causes of these problems. We then study a new
architecture exploiting all the potential of the Javascript framework React on which Taranta is built, before moving on to
implementation of the solution.

Benchmark result

Problem impact

Taranta users experienced a slowdown and eventual halt in
dashboard updates due to excessive widgets, leading to
increased browser RAM usage. Lack of a runtime notification
mechanism misled users about data updates from Tango.
Severe slowdowns froze dashboards without providing user
feedback. Unresponsive commands caused uncertainty about
system functionality. Escalating browser RAM usage posed a
risk of system slowdowns and crashes. Promptly addressing
this issue was crucial to restore user confidence in Taranta,
especially for dashboards with many widgets. Developers
were aware of performance limitations but prioritized new
feature development. Community reports highlighted
increasing software adoption for complex use cases,
showcasing Taranta's growing utility and user confidence.

Solution and implementation

To improve architecture, focused on optimizing component-
data interaction. Redesigned to trigger components only with
relevant data, preventing unnecessary renders. Decoupled
components from Tango APIs, enhancing modifiability and
extensibility using an internal store and middleware for data
subscriptions.

Data population, subscription, and unsubscription are
managed by the Redux middleware. Middleware extends the
store's dispatch method, enabling additional code execution
and logic before actions reach the reducer. The
communication with TangoGQL is facilitated by a specific
middleware named websocketmiddleware, responsible for
subscribing, unsubscribing, and populating the store with the
requested data.

Old Taranta
version

Taranta
refactored

Contact me: matteo.canzari@inaf.it


