ABSTRACT

The Square Kilometer Array
(SKA) project is an
international effort to build
two radio interferometers in
South Africa and Australia
to form one Observatory
monitored and controlled
from the global
headquarters based in the
United Kingdom at Jodrell
Bank.

The Monitoring, Control
and Calibration System
(MCCS) is the "front-end"
management software for
the Low telescope which
provides monitoring and
control capabilities as well
as implementing calibration
processes and providing
complex diagnostics
support.

Once completed the Low
telescope will boast over
130,000 individual
log-periodic antennas and
so the scale of the data
generated will be huge. It is
estimated that an average
of 8 terabits per second of
data will be transferred
from the SKA telescopes in
both countries to Central
Processing Facilities (CPFs)
located at the telescope
sites.

In order to keep pace with
this magnitude of data
production an equally
impressive data acquisition
(DAQ) system is required.
This poster outlines the
challenges encountered and
solutions adopted whilst
incorporating a bespoke
DAQ library within the SKA's
Kubernetes-Tango
ecosystem in the MCCS
subsystem in order to allow
high speed data capture
whilst maintaining a
consistent deployment
experience.

CONTACT

A. J. Clemens

Observatory Sciences Ltd.
Email:
ajc@observatorysciences.co.uk
Website:
www.observatorysciences.co.uk

Integration Of Bespoke DAQ Software With Tango
Controls In The SKAO Software Framework

From Problems to Progress

A. J. Clemens, Observatory Sciences Ltd., Cambridge, U.K.

Introduction

The SKA deployment toolchain
encompasses a comprehensive suite of
technologies:

Docker

Kubernetes/Minikube

Helm

Make

The challenge was to integrate third party
software and its dependencies with this
ecosystem in a Tango Controls based
framework.

The Quest for Data

The initial phase in integrating the DAQ
software with MCCS involved the creation
of a containerized Tango device server to
drive the DAQ software.

To achieve high-rate data logging the DAQ
software requires additional capabilities
which includes raw network interface
access among others. To enable these
essential capabilities in our OCl image we
can utilize the RUN setcap <capabilities>
within our Dockerfile.

4 N

CHALLENGE: Configuring capabilities
solely in the Dockerfile is insufficient
when deploying to Kubernetes. Whilst
the container itself receives the
necessary capabilities, the pod does
not inherit them.

N %
4 N

SOLUTION: Inform Helm about the
capabilities the pod requires by
appending them to the

‘'securityContext field in the values
file.

< /

Kubernetes Cluster Boundary

T T T T T T \

‘| |‘

| ska-low-mccs-spshw | ska-low-mecs-daq
ll MccsDaqgReceiver i

l' $Tango Device Server i EF DagHandler
:'I DAQ i T

I Frontend H Backend

\. y

-

Figure 1. First Evolution
of DAQ Architecture

4 N

CHALLENGE: Running the device server
with correct permissions introduced
an unintended issue - unnecessary
capabilities were added to all team
device servers.

g)LUTION: To selectively apply \
capabilities only where necessary, we
opted to isolate this particular device
server within a dedicated DAQ
repository, complete with its own OCI

Image.

< /

SKA-low - the SKA’s low-frequency instrument

The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise
our understanding of the Universe. It will have a uniquely distributed character: one observatory
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid,
will be observing the Universe at different frequencies. They are also called interferometers as
they each comprise a large number of individual elements working together to form a single
large telescope.

TEN @ NG sl i NI TR

WMWAANAN | A i
Frequency range:

50 MHz . 131,072
350 MHz | "™"Stadons

Location: Australia

Total
collecting
area:

Maximum distance
between stations:

>74km

Data transfer rate:

7.2 Terabits

per second

Image quality of
SKA-low (left) versus
| the best current facility
& operating in the same
| frequency range, the LOw
Frequency ARray (LOFAR),
in the Netherlands (right).
S SKA-low's resolution will
B be similar to LOFAR.

Compared to LOFAR Netherlands, the current
best similar instrument in the world

& & 4
St 20% 8x 135x
P & 4 better more the survey
b 4 4 resolution sensitive speed

A

T TANGAL
- >

CHALLENGE: Despite specifying EXPOSE
<port>/udp’ in the Dockerfile our
device server was not receiving data
as anticipated. Surprisingly the
command does not directly affect
network functionality.

N /
4 N

SOLUTION: We refined the Helm
templates to generate a load balancer
service for each receiver, empowering
it to efficiently route traffic to the
appropriate port of its respective
receiver’s pod.

< /

G—IALLENGE: Despite having a data \
routing service in place receiving data
proved challenging. This persisted
because Minikube lacks the ability to
grant raw network interface access
resulting in packet loss at the cluster

>boundary. <
SOLUTION: We split DAQ into a frontend

and a backend connected via gRPC
and a Kubernetes service. This
allowed deployment of the frontend
with SKAO tools and the backend via
Docker for raw network interface

\access. (See Figure 1) /

-

CHALLENGE: When transitioning from \
successfully capturing simulated data
in Minikube to hardware sites with a
complete Kubernetes setup we
continued to face network interface
access challenges.

/SOLUTION: A Container Network \
Interface (CNI) meta-plugin, MULTUS,
enabled us to load our primary CNI,
Calico, and grant pods access to an

additional network interface thus
facilitating the capture of data.

< /

The Correlator Saga

At this stage of development our DAQ
device had the capability to capture data
in all modes with the exception of
correlated data which had additional
dependencies including an NVIDIA GPU,
CUDA and xGPU support.

<

CHALLENGE: Creating a compatible OCI
image for both Tango Controls and
CUDA proved highly challenging.
Complex compatibility matrices and
version disparities hindered
development, highlighting the need

kfor an alternative approach. /

GDLUTION: To decouple these
requirements, we split the DAQ
device further. We eliminated the
Tango dependency by moving the
Tango device server out of the DAQ
repository allowing use of an official

\CUDA base image. /

ska-low-mccs-spshw ska-low-mccs-daq
MccsDagReceiver
Tango Device Server DaqHandler
DAQ AN DAQ A
Frontend \ Backend i
Imp&prted /
B'y Imported

By

ska-low—f‘nccs—daq-interface

% DaqClient [«

Figure 2. Final Evolution
of DAQ Architecture

4 R

CHALLENGE: Upon deployment the DAQ
server initially struggled to
communicate with the host’s GPU
due partly to deployment
configuration and partly to the overall

gRPC |
% DagServer

configuration of the cluster.

. %

/SOLUTION: Register the GPU as a cluster\
resource and request via Helm’s
‘resources::limits::nvidia.com/gpus’
key and ensure the host has the right
driver version, NVIDIA Container

Toolkit and Docker daemon using the

\\NVIDIA Container Runtime. /

