
pip

twine

Web
Browser

Acc-Py Package Repository

Package Index Service
(simple-repository)

Web UI
(simple-repository-browser)

Package Upload Service
(simple-repository-upload)

Storage for
In-house Packages

PyPI
(pypi.org)

GitLab

ElasticSearch /
Kibana

C
lient G

atew
ay (N

ginx)

A
ut

h 
G

at
ew

ay
M

on
ito

rin
g 

G
at

ew
ay

R
ep

o 
G

at
ew

ay

Package Repository Service Architecture

The initial prototype has been published on GitHub under an MIT licence and it is hoped that it will trigger interest 
from other parties that have similar operational needs. With sufficient collaborative interest, there is potential for 
the project to be openly developed, and to power Python package repositories across many domains.

Usable by Other Laboratories

https://github.com/simple-repository

PyPI

(pypi.org)

Index Service
(simple-repository)

"yank"
injector

Metadata file
generator

Download priority
selector (dependency
confusion mitigator)

Remote distribution
merger

Local storage
(special overrides

of PyPI distributions)

Cache

Remote repository
gateway

Local storage
(in-house packages)

pip / Web UI 

PEP-503/PEP-691
(Distribution details &

project list)

PEP-658
(Distribution details)

The implementation is simplified by the creation of 
reusable components that represent the abstraction of 
an upstream repository. Such an abstraction allows 
components to be chained together in the form of a 
directed acyclic graph, which progressively enhances 
repository data or performs operations such as caching 
and filtering.

Component-Based Approach

Inside the Index Service
Security-Oriented

some-internal-package-1.0
my-package-0.1.1
...

some-public-package-1.0
my-package-2.0.0
...

> pip install my-package

X

some-public-package-1.0
my-package-2.0.0
...

some-internal-package-1.0
my-package-0.1.1
...

X

> pip install my-package

Merging
rules

Problem: Solution:

Eliminates dependency confusion attacks
Authentication with Gitlab API and in-
house Role-Based Access Control (RBAC) 
Per-project ownership
"Yank" for in-house packages
"Yank" override for PyPI packages
Flexibility to introduce new measures

Dependency confusion is a type of supply-
chain attack whereby a software installer script 
is tricked into downloading malicious code from 
a public repository instead of the intended file 
with the same name from an internal repository. 
In other words, having two repository 
sources, public and private, poses a 
security risk, when the installer has to prioritize 
the source. Reducing upstream options to a 
single private feed is one of the possible 
mitigations that has been implemented here.

Monitoring and Analytics

Tracking download and upload actions
Actions correlated with access and authentication
Information stored in an ELK stack shared with other services
Kibana dashboards provide visual analytics capabilities

Web User Interface (Web UI)

Package index
PyPI.org

Dependencies

Inspired by PyPI.org and is familiar to every Python developer
Creates links to documentation, source code and other 
supporting information
Can be configured to crawl and index all connected 
repositories for combined search capabilities
Package details UI indicates in which of the repositories it has 
been found (PyPI or in-house)
Presents additional information, e.g. package dependencies

Compatible with any Simple Repository API (PEP-503)
Can be used separately as a standalone service

TOWARDS A FLEXIBLE AND SECURE

PYTHON PACKAGE REPOSITORY SERVICE
I. Sinkarenko, P. Elson, F. Iannaccone, W. Koorn, B.Copy, CERN, Geneva, Switzerland

Contact: ivan.sinkarenko@cern.ch, philip.elson@cern.ch ICALEPCS 2023 / THPDP067

The use of third-party and internal software packages has 
become a crucial part of modern software development. 
Despite its benefits, installing arbitrary software from a third-
party package repository poses security and operational risks. 
For instance, the dependency confusion attack first published 
in 2021 has still not been fully addressed by the main open-
source repository services. An in-house development was 
conducted to address this, using a modular approach to 
building a Python package repository, called "Acc-Py Package 
Repository", that enables the creation of a powerful and 
security-friendly repository service using small components. 
The solution is not CERN-specific and is likely to be relevant to 
other institutes facing comparable challenges.

Overview


