
MACHINE LEARNING BASED SAMPLE ALIGNMENT AT TOPAZ
M. Henderson, J. Edelen∗, M. Kilpatrick, I.V. Pogorelov, RadiaSoft LLC, Boulder, USA

S. Calder, B. Vacaliuc, ORNL RAD, Oak Ridge, USA
R.D. Gregory, G. Guyotte, C. Hoffmann, B. Krishna, ORNL, Oak Ridge, USA

Abstract
Neutron scattering experiments are a critical tool for

the exploration of molecular structure in compounds. The
TOPAZ single crystal diffractometer at the Spallation Neu-
tron Source studies these samples by illuminating samples
with different energy neutron beams and recording the scat-
tered neutrons. During the experiments the user will change
temperature and sample position in order to illuminate differ-
ent crystal faces and to study the sample in different environ-
ments. Maintaining alignment of the sample during these
processes is key to ensuring high quality data are collected.
At present this process is performed manually by beamline
scientists. RadiaSoft in collaboration with the beamline
scientists and engineers at ORNL has developed a new ma-
chine learning (ML) based alignment software automating
this process. We utilize a fully-connected convolutional neu-
ral network with dropout, configured in a U-net architecture,
to produce sample segmentation masks from which we com-
pute the sample center of mass. We then move the sample
using a custom python-based EPICS IOC interfaced with
the motors. In these proceedings we provide an overview of
our ML tools and initial results aligning samples at ORNL.

INTRODUCTION
The TOPAZ instrument is a high-resolution neutron time-

of-flight (TOF) Laue diffractometer for single-crystal diffrac-
tion located on a beamline at the Spallation Neutron Source
(SNS) user facility at Oak Ridge National Lab (ORNL) [1].
Along with the diffractometer itself (which already features a
variable number of individual neutron detectors), the TOPAZ
beamline is host to a large array of instruments and hardware
for executing experimental controls and maintaining desir-
able sample environments. Implementing these controls and
collecting the data needed for users to achieve their scientific
goals are the responsibility of a dedicated group of beamline
operators with a high degree of expertise in experimental
neutron science. Simplifying the workflows of these opera-
tors, and automating controls processes wherever possible,
is a critical effort for maximizing the scientific output of
user facilities like the SNS.

CONTROLS AT TOPAZ
In addition to the overall mechanical complexity of beam-

line hardware and instrumentation, operational logistics at
TOPAZ include the navigation of two distinct operational
modes and a rich but complex network of controls software.
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Operational Modes
The operational modes in use at TOPAZ are an ambient-

temperature (ambient) mode and a cryogenically-controlled
(cryo) mode. These modes differ not only in the range of
temperatures they represent within the sample chamber, but
also in the hardware and controls available during their op-
eration. Most notably, because the cryostream instrument
used in cryo-mode enters the chamber from a port which
typically hosts a diagnostic camera in ambient-mode, an
alternative camera mounted to a side port (from which the
sample arm is not clearly visible) must be used. Figure 1
demonstrates the difference in sample views provided in
ambient- (top) and cryo-mode (bottom). Additionally, sam-
ple shields sometimes used in cryo-mode are visible in and
can partially obscure the sample images.

Controls Network
Experimental controls at TOPAZ are implemented using

Channel Access (CA) protocols within the EPICS frame-
work. Like most instruments at the SNS, TOPAZ encom-
passes an extensive network of EPICS controls and process
variables (PVs). This network covers sample arm motor
positions, diagnostic camera controls, thermal conditions,
neutron guide environments, detector settings, and much
more [1]. In addition to low-level controls, the network also
features several layers of abstracted controls mechanisms.
These include mechanisms for security purposes, such as
virtual motors used to validate proposed motor controls, and
input-output controllers (IOCs) for simplifying workflows
and automating controls processes.

Sample Alignment
One feature of the EPICS network at TOPAZ is an IOC

for executing semi-automated sample alignment. This IOC
automates the determination of motor positions, but requires
a human operator to identify approximate sample centroids
in diagnostic camera images. Operators uses a graphical
user interface (GUI) to initiate an alignment state, and then
must click a sample image in the GUI to identify the cen-
troid. This process is repeated over several adjustments to
motor positions, after which the center of the sample will
have been aligned with the current beam position. Although
this process is much faster than manually and incrementally
updating motor positions until the sample centroid and beam
are aligned, it still requires operators to expend time and
attention on alignment which could be better spent on more
complex tasks. In cases where samples must be re-aligned
frequently (e.g., due to sample shifting during thermal vari-
ations), this expense becomes significant.
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IMAGE SEGMENTATION TASK
The human-in-the-loop portion of the current sample

alignment process at TOPAZ can be thought of as an image
segmentation task, in which an observer must correctly de-
termine which pixels in an image contain the sample and
which do not (see Fig. 1). In the context of a machine vi-
sion algorithm, this requires the computation of a sample
mask, an image equal in dimensions to the sample image but
with pixel values of either zero (not sample) or one (sam-
ple). Once a determination of the spatial distribution of the
sample has been made by an observer, its centroid can easily
be identified as the center of the distribution. For machine-
computed sample masks, this is done by treating the mask
as a discrete density array and computing its center of mass.
Following identification of the sample center at each stage
alignment, the observer must initiate the appropriate controls
process either by clicking the sample center on-screen (for
a human observer) or by setting the corresponding EPICS
PVs (for an automated controls algorithm).

Figure 1: Examples of raw sample images from the TOPAZ
beamline (left) and human-defined sapmle masks (right).

UNET MODEL
To meet the need for robust semantic segmentation of

sample images from the TOPAZ beamline, we chose to de-
velop an implementation of the popular convolutional neural
network (CNN) architecture known as UNet [2]. Originally
designed for semantic and instance segmentation of medical
imagery, UNet performs strongly across a broad range of
segmentation tasks and application domains.

UNet Architecture
The UNet architecture (see Fig. 2) is specifically designed

for semantic and instance segmentation of images. It fea-
tures a contraction path for extracting semantic information
from an input, and an expansion path for reconstructing
this semantic information into a spatially resolved format.
The output of the network is a transformed representation
which maps semantic (potentially including instance-level)
information to the pixels of the input image.

Along a UNet’s contraction path, an input is subjected
to a series of standard two-dimensional convolutional units

involving two two-dimensional convolution operations each
followed by an optional dropout operation and ReLU acti-
vation. After each convolutional unit, max-pooling is per-
formed to reduce the spatial dimensions of the data prior
to the application of the next unit. The number of contrac-
tion units used is parameterized by the total number of UNet
layers. At the bottom-most layer of the UNet, the input is rep-
resented as a compact feature-space vector which contains
rich semantic information but no spatial information [2].

The feature-space representation produced by the contrac-
tion path is propagated through an expansion path along
which transpose two-dimensional convolutions re-introduce
spatial dimensionality. Although the transpose convolutions
increase the spatial extent of the transformed data, they do
not reproduce the spatially resolved features of the input. To
retrieve this information, the outputs of each unit along the
contraction path are forwarded to the corresponding expan-
sion unit in the same layer, and are concatenated with the
up-sampled data. Aside from the transpose convolutions,
convolutional units along the expansion path are typically
chosen to match those of the contraction path.

Hyperparameters of our UNet model including the num-
ber of layers, the number of output filters at each layer, the
kernel size, and the stride were initially chosen to match
those of the original UNet in [2]. These values, along with
dropout and learning rates, were then used as tuning pa-
rameters for the model architecture, which was ultimately
subjected to a hyperparameter tuning procedure.

Hyperparameter Tuning
Our UNet model was implemented in Python using the

TensorFlow library [3], and we chose to use the Keras-
Tuner optimization framework [4] to conduct Bayesian opti-
mization of hyperparameters. Standard protocols like early-
stopping and parameter constraints were used to reduce the
significant computational costs of this effort. The resulting
optimized UNet architecture features three layers, 3 × 3 reg-
ular convolutional kernels, 2 × 2 transpose convolutional
and max-pooling kernels, 16 ⋅ 2𝑛𝐿−𝑙 output filters at each
layer (where 𝑛𝐿 is the total number of layers and 𝑙 is the layer
number), dropout rates of 0.05, 0.05, and 0.1 (constant at
each layer), and a learning rate of 1.44 × 10−3.

Transfer Learning
An important benchmark for the success of our ML-based

controls applications is the ability to rapidly deploy to new
facilities without the need to train new models from scratch.
In addition to our efforts at TOPAZ, we have been conduct-
ing similar work for HB2A, a beamline instrument at the
High-Flux Isotope Reactor (HFIR) facility at ORNL [5]. To
test the generalization abilities of our UNets, we performed
additional rounds of training during which models initially
trained on data from one beamline were either fed more
data from their original beamline or the opposite one. This
process is an example of transfer learning [6, 7], which has
been shown to achieve improved performance through en-
hanced generalization. In our case, this process provided an
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Figure 2: A depiction of the UNet architecture, with explanations of key components.

especially robust test of generalization given that TOPAZ
sample images are taken with ordinary cameras, whereas
HB2A sample images are taken with a neutron camera. We
found that transferred models not only achieve similar train-
ing and validation losses compared to those trained on a
single dataset, but ultimately outperformed those models on
unseen test data for both beamlines.

UNCERTAINTY QUANTIFICATION
Accurate, robust uncertainty quantification (UQ) is criti-

cal for any ML application that will eventually inform real-
world decisions [8, 9]. In our ML-based automated controls
applications, uncertainties are used to determine, e.g., the
need for human intervention during alignment procedures.
The task of quantifying model predictive uncertainties is an
area of study unto itself, and requires extensive consideration
and testing for successful application.

Quantification Methods
We chose to test two popular statistical approaches for

quantifying model prediction uncertainty: ensemble bagging
and MC-dropout. In the ensemble method, an ensemble of
ML models with the same architecture are randomly ini-
tialized and trained to produce similar but distinct models.
Ensemble predictions are taken as the mean of individual
model predictions, and uncertainty statistics are computed
from the variances (see Fig. 3). In the MC-dropout method,
a network is allowed to undergo random connection dropouts
(which are usually disabled after training) so that predictions
from a single model exhibit random variation. Several such
predictions are made, and the mean and variance are used
in much the same way as for ensemble bagging.

Although inherently stochastic ML models like variational
networks and Bayesian neural networks (BNNs) can provide
built-in UQ which benefits from enhanced interpretability
and connection to model predictions [8], they also introduce

significant development and operational costs and in our case
would require extensive augmentation of the UNet model.
On the other hand, statistical methods like the ones used here
have been known to produced less accurate and potentially
biased predictions of model performance [8, 9]. To verify
the adequacy of statistical methods for this application, we
have conducted thorough testing of each method against
ground-truth model errors computed over a test dataset.

After initial rounds of UQ testing, we determined that an
ensemble method approach was the most viable for use in our
application. Despite initial concerns about potentially higher
execution times in comparison to the MC-dropout method,
we found that both methods required similar execution times
for the same number of overall predictions (roughly 100-300
ms for 20 predictions). Although the ensemble method also
requires a much more substantial investment of training time,
we ultimately found that the resulting statistics showed much
higher fidelity to the ground-truth error (see Fig. 4). With
verification of these results in live testing (see Model De-
ployment), we are now also considering a combination of
these methods which employs an ensemble of UNets each
producing a set of MC-dropout predictions.

Ensemble Performance & Statistics
We randomly initialized and trained ensembles of 20

UNet models for 16 distinct combinations of training set
(TOPAZ/HB2A), hyperparameter optimization (or lack of),
and continued or transferred training (if any). Figure 3 shows
an example sample image with the accompanying sample
and uncertainty masks for sub-optimal (Ensemble 1) and
optimal (Ensemble 2) ensembles. Computing ensemble vari-
ances in the sample mask and center of mass predictions
over the test set, we were able to compare against the MSE
metric relative to ground-truth masks. Doing so revealed
that, especially for optimal ensembles configurations, the
distributions of error estimates matched very well with the
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Figure 3: Uncertainty quantification through ensemble statistics for two ensembles with distinct training pipelines.

Figure 4: Distributions of RMS error and ensemble variances for an optimized model over a test set of image data.

Figure 5: Sample images from TOPAZ before (top) and after
(bottom) automated alignment using rscontrols.

true error distributions represented by the ground-truth MSE.
Example distributions for errors in final centroid predictions
over the test set (which are easier to visualize than error

distributions for the sample mask predictions) are given in
Figure 4 for a nearly-optimal ensemble. Distributions for
optimal ensembles also match closely, but may appear trivial
as errors are tightly clustered around 0 pixel-error.

The results of our ensemble UQ testing were highly
promising, as ground-truth MSE cannot be computed during
live operation and statistical measures of predictive uncer-
tainty like ensemble variance tend to succeed at capturing
aleatoric sources of uncertainty but do not always capture
epistemic sources in ground-truth predictive uncertainties
like the MSE [9]. Equipped with a robust method of evaluat-
ing real-time model predictions, we were able to confidently
pursue automated alignment at TOPAZ in a monitored live-
testing environment.

MODEL DEPLOYMENT
We performed iterative deployments of our ML-focused

automated controls software at TOPAZ for testing under
supervised conditions. These deployments and the resulting
improvements to our software led to the creation and finally
utilization of our new flexible EPICS-based controls frame-
work, rscontrols, which is described in ”A Flexible EPICS
Framework for Sample Alignment at Neutron Beamlines”
published in these proceedings. This software allows us
to quickly construct EPICS IOCs which embed our UNet
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models and controls process into a unified framework which
can be initiated, operated, and run quickly and easily by
beamline operators.

Through rscontrols, our integrated center of mass pre-
diction tools were used to interact with the existing mo-
tor automation software at TOPAZ to perform a successful
demonstration of fully-automated sample alignment (see
Fig. 5). In this process, our UNet models were used to pro-
duce live sample masks from which centers of mass were
computed. Then, the automation software replaced iterative
clicks typically made by operators with put operations to the
EPICS PVs associated with click positions. Throughout the
process, our software monitored the progress of the motor
automation IOC in order to make assignments to the EPICS
PVs at the proper time.

CONCLUSION
We have successfully built and tested machine learning

models for image segmentation to automate sample align-
ment processes at TOPAZ. One of the most important aspects
of this work has been the quantification of model prediction
errors in live settings given the absence of ground-truth data.
Much of our early development efforts prior to live automa-
tion tests were dedicated to UQ, and the promising results
achieved during offline testing were an absolutely neces-
sary benchmark for attempting tests with real experimental
equipment.

This work also solidifies that machine learning models for
image segmentation have proven to be useful components in
the further automation of sample alignment tasks at TOPAZ,
despite the pre-existence of semi-automated controls soft-
ware on the beamline. Using ML models, we have achieved
a higher degree of automation and reduced the overall work-
load associated with sample for beamline operators. As we
move forward with the automation of more complex controls
tasks at TOPAZ, we remain committed to practicing safe,
responsible ML development and application.
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