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Abstract

Neutron cameras are utilized at the HB2A powder diffrac-
tometer to image the sample for alignment in the beam. Typ-
ically, neutron cameras are quite noisy as they are constantly
being irradiated. Removal of this noise is challenging due to
the irregular nature of the pixel intensity fluctuations and the
tendency for it to change over time. RadiaSoft has developed
a novel noise reduction method for neutron cameras that in-
scribes a lower envelope of the image signal. This process
is then sped up using machine learning. Here we report on
the results of our noise reduction method and describe our
machine learning approach for speeding up the algorithm
for use during operations.

INTRODUCTION

Neutron Cameras are a fairly ubiquitous piece of instru-
mentation specifically in neutron scattering experiments.
Here instrument scientists utilize neutron cameras to visu-
alize the sample location relative to the incident beam to
ensure proper alignment in the beam. While these cameras
are highly useful, due to the fact that they experience direct
radiation the pixels degrade over time and noise develops
that degrades the image quality. For many cases this degra-
dation doesn’t impact the ability to visualize the sample but
for low absorbing samples it can be nearly indistinguishable
from the beam. Over the years numerous efforts have been
made to remedy noise in neutron camera images. The advent
of machine learning has also led to a resurgence of these
efforts as the problem is notoriously difficult to solve. Me-
dian filters are common approach to removing this noise [1]
due to the nonuniform nature of the noise. Recent work on
adaptive median filters [2] has shown some promise but me-
dian filters can be slow and are not always robust to changes
in the noise characteristics over time. Another recent effort
utilizes Generative Adversarial Networks to remove signal
noise [3]. There is a strong machine learning upside to this
technique however it relies on machine learning as the pri-
mary mechanism for removal of the noise as opposed to
understanding the noise and using machine learning as a
speed up tool. Other methods using principle component
analysis have also shown promise in recent years [4]. Here
we develop a denoising algorithm based on the fundamental
characteristics of the noise in the nuetron camera data. We
then use convolutional neural netwroks to speed up this cal-
culation for use in real time during oprations. Our algorithm
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has been fully tested and deployed at the HB2A beamline at
Oak Ridge National Laboratory.

DENOISING ALGORITHM

Speckle/“salt-and-pepper” noise is conspicuous in the raw
images collected from the neutron camera at HB2A, as can
be seen in the left panels of Fig. 1. Cleaning up the images
improves our ability to generalize sample identification al-
gorithms in images from neutron cameras and improves the
ability for instrument scientists to visualize the sample in
the beam. Our machine learning algorithm is trained using
data generated using a first principles algorithm developed
to remove noise by identifying its key characteristics.

We studied the noise in the images by examining the data
on a slice-by-slice basis. We chose a horizontal slice as the
aspect ratio of the beam is more favorable for understanding
the noise characteristics in this direction. An inspection of
the signal contained in a typical row of 640 pixels, such as
that pictured in Fig. 2, shows that the statistical properties
of the speckle noise are quite different from those of the
Gaussian white noise that is predominantly encountered
in practice and for which numerous denoising algorithms
exist. Two salient features are, the large noise amplitude
that is comparable in magnitude to the signal itself, and the
“one-sidedness” of the noise, in the sense that the noise only
assumes positive values. This special character of the noise
makes it possible to attempt its removal by approximating
the targeted denoised signal via inscribing an envelope from
below, as shown in Fig. 2.

The inscribed envelope can be computed for each row of
pixels, whereupon the denoised rows replace the original
pixel rows in the image. Interestingly, not every way of
inscribing an envelope is equally robust; the best-performing
of the algorithms that we explored is based on a kind of
min-pooling within a window moving along a line of pixels.
It proved important to properly match the size of the min-
pooling window to the size of the footprint of the spikes that
make up the noise in the images. Figure 1 illustrates the
results of application of this procedure to two of the more
feature-rich sample images.

MACHINE LEARNING ADAPTATION

We developed a machine learning adaptation of our de-
noising algorithm for the purpose of speeding up execu-
tion during operations. While our baseline algorithm is not
prohibitively slow, higher data rates demand faster image

TUPDP114
841

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©



Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

==

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISSN: 2226-0358

ISBN: 978-3-95450-238-7

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-TUPDP114

Figure 1: Raw neutron camera sample images at HB2A before (a, b) and after (', b") “inscribed envelope” denoising.

processing. To this end, training a neural network on our
algorithm allows for execution in real time.

We explored model architectures of two types, both be-
longing to the general family of convolutional neural net-
works for 2D image processing. The first type is similar to a
conventional autoencoder architecture, that is, it consists of
an encoder sequence of 2D convolution and pooling layers
(with a concurrent increase in the number of feature maps),
followed by a decoder sequence of 2D deconvolution layers
that ends in an output layer of the same shape as the input
image. Dropout layers can optionally be added at the train-
ing stage, as well. We varied the size and number of the
layers, resulting in the number of trainable parameters rang-
ing from approximately 20 thousand to about 2 million, and
trained with different choices of optimizers and loss func-
tions. The models were trained on 640-by-480-pixel HB2A
images, with 820 images used for training and 50 each for
validation and post-training testing. The target images were
produced from the same set by applying our non-ML denois-
ing procedure described above. We performed two kinds of
training: First, using the raw images as input and denoised
images as target; and second, via pre-training the net as an
auto-encoder (i.e., by using the denoised images as both
input and target for the output), followed by a conventional
supervised-learning training procedure.
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The second kind of architectures that we explored for per-
forming image denoising were of the U-Net type, which
is similar to the convolution-deconvolution architecture de-
scribed above, but involves in addition a coupling of the
layers on the convolution path into the layers on the decon-
volution path [5]. We studied training with and without
dropout. The number of trainable parameters in the models
we studied varied from about 200 thousand to about 1.5
million. As in the convolution-deconvolution case, we used
the raw and denoised HB2A images for regression training,
using either conventional training with raw and denoised
images, or pre-training using denoised images as both input
and targets. Pre-training did not have a noticeable effect on
the efficacy of subsequent training.

The trained model that we chose for our timing studies and
ultimately for deployment at the neutron imaging beamlines
at ORNL is a convolutional neural network of the U-Net
kind (as shown in Fig. 3). The contraction path consists of 5
pairs of Conv2D layers, the first 4 of which are each followed
by a MaxPooling2D layer. The convolution kernels are 3 x 3,
the number of filters is doubled progressively from 16 to
256, the pooling kernels are 2 x 2, the padding is ’same’.
The expansion path consists of 4 pairs of the 3 x 3-kernel
Conv2D layers with the number of filters progressively de-
creasing to 16, each pair of Conv2D layers preceded by a
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Figure 2: A “typical” 640-pixel-long row of pixels form an HB2A camera image. Denoised signal is approximated by an
envelope (green) inscribed from below into the raw noisy data (blue).

Conv2DTranspose layer of kernel size 2 x 2 and stride 2 in
each dimension, and a concatenation layer coupling into the
layers on the contraction path, in a manner characteristic
of the U-Net architecture. We use the tanh activation func-
tion in all layers except the output one, where the sigmoid
activation function is used. The model has approximately
2M trainable parameters. The model was compiled with the
tf.keras Adam optimizer and MSE loss function, and trained
without dropout. The training image set consisted of 920
HB2A images pairs (raw and denoised with the non-ML
denoiser), of which 820 were used for training, 50 for val-
idation, and 50 for testing. The trained model generalizes
quite well; an example of prediction made with the trained
net can be seen in Fig. 4.

Figure 4 shows the result of our neural network model
trained on data that was denoised using our first principles
approach. Left is the original image, middle is processed
with our baseline algorithm, and right is the model out put
after training. The result is a neural network that does an
excellent job reproducing our baseline algorithm with a sig-
nificantly reduced execution time.

TIMING & PERFORMANCE

To evaluate the timing and performance we executed our
baseline algorithm and the machine learning algorithm using
the same computational resources. We then evaluated the
execution time of the methods considering also the ancillary
steps required for loading and scaling the images (necessary
for the ML model). The result of our timing analysis is
shown in Fig. 5. Here we executed both approaches on a
large batch of test images and plotted the execution times as a
histogram. The blue histogram shows the machine learning
method while the red histogram is the baseline method.
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The machine learning algorithm executed almost 8 times
faster than the baseline algorithm down to below 100 ms.
This would enable the use of of our algorithm with data
acquisition rates of 10 Hz which is a typical speed for slow
controls needed for sample alignment at these beamlines.

DEPLOYMENT AND TESTING

We deployed out algorithm on an EPICS IOC using the
a flexible framework developed in Python specifically for
fast deployment. The details of this framework are also
presented in these proceedings. Because the IOC is only
required to load the image and display a processed image
the deployment details are quite simple. The raw image is
made available as a process variable in epics. Our software
loads the image, pre-processes it, applies the neural network,
reprocesses it, and then serves the image to an epics PV that
can be displayed in the user interface, Fig. 6. In collaboration
with ORNL we installed our software on the beamline and
integrated the denoised image into the instrument’s GUI.
There is now a switch that allows operators to view either
the raw image or the denoised image.

CONCLUSIONS

We have successfully developed and implemented a novel
denoising technique that utilizes an inscribed envelope to re-
move speckle from neutron camera images. We then trained
a U-Net to replicate this process but with an 8x speed up
allowing it to be seamlessly implemented into operations.
We have tested and deployed our software at HB2A and are
in the process of exploring the extension of this effort to
other beamlines at ORNL.
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Figure 3: A depiction of the UNet architecture, with explanations of key component.
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Figure 4: An HB2A camera image denoised with the original algorithm and a trained U-Net (see text).
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Figure 5: Timing results histogram for denoising with the original algorithm (red) versus the U-Net (blue) that was trained
on the data denoised with the original algorithm, run on the same hardware.
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Figure 6: HB2A sample images in the GUI before (top) and after (bottom) “inscribed envelope” denoising during testing.
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