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Abstract
The controlled longitudinal emittance blow-up is

necessary to ensure the stability of high-intensity LHC-type
beams in the CERN SPS. It consists of diffusing the
particles in the bunch core by injecting a bandwidth-limited
noise into the beam phase loop of the main 200 MHz RF
system. Obtaining the correct amplitude and bandwidth
of this noise signal is non-trivial, and it may be tedious
and time-demanding if done manually. An automatic
approach was developed to speed up the determination
of optimal settings. The problem complexity is reduced
by splitting the blow-up into multiple sub-intervals for
which the noise parameters are optimized by observing the
longitudinal profiles at the end of each sub-interval. The
derived bunch lengths are used to determine the objective
function which measures the error with respect to the
requirements. The sub-intervals are tackled sequentially.
The optimization moves to the next one only when the
previous sub-interval is completed. The proposed tool is
integrated into the CERN generic optimization framework
that features pre-implemented optimization algorithms.
Both single- and multi-bunch high-intensity beams are
quickly and efficiently stabilized by the optimizer, used
so far in high-intensity studies. A possible extension to
Bayesian optimization is being investigated.

INTRODUCTION
Given the strict beam parameter constraints to be met

before injecting into the LHC, maintaining longitudinal sta-
bility in the SPS is an essential task. Stability relies on the
increased synchrotron frequency spread thanks to a double-
harmonic RF system, as well as on the controlled longi-
tudinal emittance blow-up. Both techniques increase the
synchrotron frequency spread within the bunch, enhancing
Landau damping [1, 2].

The controlled longitudinal emittance blow-up is based
on the injection of bandwidth-limited phase noise into the
beam phase loop which locks the main RF system operat-
ing at 200 MHz to the bunch phases. A noise signal with
a bandwidth-limited excitation spectrum is needed. The
spectrum, as well as the bandwidth, is defined by the cutoff
frequencies that follow the variation of the small-amplitude
synchrotron frequency, 𝑓s0, during the acceleration ramp.
The low and high cutoff frequencies are named 𝑓low, and 𝑓high
respectively. By normalizing those values with respect to 𝑓s0,
the ratios called “margin low” 𝑚low = 𝑓low/𝑓s0 and “margin
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high” 𝑚high = 𝑓high/𝑓s0 are defined. Figure 1 illustrates the
relation between 𝑓s0, the frequency band, and the emittance.
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Figure 1: Example of a normalized synchrotron frequency
distribution (black) in a double-harmonic RF system. The
horizontal dashed lines indicate 𝑚low and 𝑚high respectively.
The vertical blue line marks the longitudinal emittance.

These normalized settings are easier to manage for tuning
the noise bandwidth since their value remains constant de-
spite the changes of 𝑓s0 during acceleration. The aim of the
blow-up is to impact the bunch core exclusively, without in-
creasing the tail population of the particle distribution, which
would risk generating losses. In addition, the effects on the
longitudinal beam profiles are also dependent on the blow-
up amplitude, 𝑎, defined in rms degrees of the 200 MHz RF
system. A low-amplitude noise signal may be ineffective,
while too high amplitude can negatively affect the bunch
distribution. An additional parameter is the time interval
during the cycle the RF manipulation is applied.

Fine-tuning the blow-up settings is challenging since mul-
tiple time-dependent settings are involved. The manual pro-
cedures are time-intensive and cannot guarantee optimal
noise settings. Moreover, even optimal settings necessi-
tate revaluation when parameter changes occur, e.g., higher
bunch intensity or a different voltage program. To simplify
the optimization, efforts have been recently dedicated to au-
tomating the setup of the noise for the controlled blow-up in
the SPS. Initial studies in this direction were outlined in [3],
where the automatic control of the blow-up was demon-
strated for single-bunch beams. The software is integrated
as part of the CERN Machine Learning (ML) platform [4],
which provides pre-implemented generic optimization algo-
rithms. The advantage of relying on this framework lies in
its ambition to integrate numerical optimization, machine
learning, and reinforcement learning into routine accelerator
operation. The extension of the software for single- to multi-
bunch beams has been straightforward; the management of
the settings did not change, as well as obtaining the observa-
tions. However, a more careful reassessment was necessary
for the cost function, which must take into consideration
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multiple bunches at the same time.
This paper presents the studies undertaken to develop

and release an operational tool for the automatic setup of
controlled longitudinal emittance blow-up for the SPS. The
problem is introduced by highlighting the main aspects of
the optimization loop required. The efficient approach of
splitting the problem into sub-intervals and sequentially op-
timizing the blow-up settings is described. Some examples
of optimization processes are shown thereafter. Moreover,
the core of the operational tool was employed for some pre-
liminary tests of Bayesian optimization.

OVERVIEW OF SPS AUTOMATIC
BLOW-UP TUNING

The beam parameters at SPS extraction, e.g. the bunch
lengths, are tightly specified for LHC-type beams. The qual-
ity of the extracted beam depends strongly on the blow-up
settings, to achieve beam stability during acceleration and
optimum bunch lengths for transfer to the LHC.

The effects of this RF manipulation, essentially the forced
diffusion of particles with synchrotron frequencies within
the bandwidth corresponding to the applied band-limited
noise, are quantified through measurements of the longitu-
dinal profile. One main parameter in the longitudinal plane
to observe the blow-up effects is the bunch length. A black
box approach is followed for the automatic setup of the con-
trolled longitudinal emittance blow-up. The noise settings,
i.e. 𝑎, 𝑚low, and 𝑚high, which are functions of the cycle time,
are treated as inputs, while the resulting bunch length obser-
vations are the output.

The optimizer changes the noise settings by observing the
bunch length at certain times in the cycle. The optimization
loop is sketched in Fig. 2.

Online Measurements
Longitudi-

nal Profiles

GeOFF Optimizer
Optimiza-
tion Tool

LHC
Software

Architecture

Noise Generator

Figure 2: Optimization loop: the measured longitudinal
beam profiles are used by the optimizer to calculate the
bunch lengths, and subsequently adjust the blow-up by tun-
ing the amplitude and frequency band via the LHC Software
Architecture (LSA).

Noise Generation
The noise generation software package is detailed in [5].

The settings 𝑎, 𝑚low, and 𝑚high for the noise generator are
stored in the LHC Software Architecture (LSA) settings

database. It generates bandwidth-limited noise between
𝑚low and 𝑚high, with amplitude 𝑎, and a desired duration.

Online Measurements
The online longitudinal profiles are acquired throughout

the acceleration cycle (generally every 20 ms). The length
of the bunches is extracted by means of a Full-Width at
Half-Maximum (FWHM) algorithm that serves as a metric
to evaluate the effect of the applied blow-up noise, and to
define the beam as stable by analyzing the bunch length
spread among different bunches.

Optimization Tool
To achieve optimal noise settings, the code is developed

relying on the Common Optimization Interfaces (COI) [6].
The Generic Optimisation Frontend and Framework (Ge-
OFF [4], a graphical application) collects interfaces to the
accelerators and simulations thereof, and numerical opti-
mizers and reinforcement learners. Developed with COI re-
quirements in mind, the operational tool interfaces with both
input and output streams. On one side, it communicates with
LSA, enabling the manipulation of the optimizable functions.
On the other, it subscribes to the aforementioned real-time
observations from the SPS to obtain the profiles.

KEY ASPECTS OF THE
OPERATIONAL TOOL

Parameters for Operations
Parameters of the optimizer are easily accessible in LSA

via the tool to check and quickly adjust them. A modular ap-
proach is followed: the functions to optimize are selectable
(i.e. one can enable or disable 𝑎, and similarly 𝑚low and
𝑚high). Selected settings are scanned simultaneously within
their ranges defined by minimum and maximum values. To
simplify the optimization problem, the noise for the blow-up
is injected when the voltage of the main 200 MHz RF sys-
tem, the voltage ratio of the fourth harmonic RF system at
800 MHz, and the synchronous phase, are almost constant.
Keeping a fixed bunch length along the selected interval,
the stability and self-consistency of the problem are guaran-
teed [7, 8]. The initial guess for the frequency band (𝑚low
and 𝑚high) is provided based on the desired bunch length,
while the amplitude of the noise is found by the optimizer.
To facilitate the task of reaching and maintaining the target
bunch length, the optimization can be distributed over mul-
tiple sub-intervals instead of considering the entire blow-up
window. A more precise control of the bunch length is thus
achieved without increasing the complexity of the problem.

Some degree of flexibility is achieved by allowing a tol-
erance around the target bunch length. The bunch length at
the end of the injection plateau, before the blow-up starts, is
verified to avoid optimizing bad-quality beams.

Objective Function
The operational tool for the blow-up optimization is de-

signed for multi-bunch high-intensity LHC-type beams. Typ-
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Figure 3: GeOFF application panel after a successful scan over four sub-intervals.

ically, these beams consist of up to four trains of 72 bunches
with 25 ns spacing. Therefore, an objective function able to
manage information from multiple bunches is required. The
Root Mean Squared Error (RMSE) is taken as a represen-
tative cost function. The longitudinal profiles are acquired,
and, for each bunch detected, four times the standard devia-
tion of the equivalent Gaussian profile is calculated from the
measured FWHM bunch length. Given 𝑛 detected bunches,
the bunch lengths collected are = [𝜎1, 𝜎2, ..., 𝜎n]. The nor-
malized error vector is = /𝜎∗ − 1, where 𝜎∗ is the target
bunch length. The RMSE is calculated according to Eq. 1,
neglecting errors within the tolerance:

𝑅𝑀𝑆𝐸 = √
𝑛

∑
𝑖=1

𝜀2
𝑖

𝑛 . (1)

Each time the optimizer tunes the settings for a certain
sub-interval, the effects on the beam are detected by the cost
function which considers the profile acquired at the end of the
same sub-interval. The minimum of the cost function, zero,
is achieved when the bunch length of all bunches satisfies
the tolerance requirements.

Sequential Optimization
The optimization of the settings for a single sub-interval,

leaving the others untouched, reduces the chance of beam
instabilities, losses, and un-programmed beam dumps if set-
tings are not optimal. This results in avoiding missing obser-
vations for the optimizer (flat beam profiles). The advantage
provided by splitting the blow-up interval is even emphasized
by the sequential optimization of the sub-intervals. After
finding the optimal settings for a sub-interval, the optimizer
moves to the next one. The optimized settings reduce the
error between the measured bunch lengths and the target one,
returning an almost constant bunch length along the entire
interval. The disadvantage is a slower overall optimization.
Thus, a compromise between the number of sub-intervals

and the total optimization time must be found.

RESULTS IN OPERATIONS
The GeOFF application panel is shown in Fig. 3 after a

test scan over four sub-intervals. On the left side, selectable
items are available. These are the accelerator, the timing user,
the problem to face, and the optimization algorithm. The list
of optimizers consists in Bound Optimization BY Quadratic
Approximation (BOBYQA, [9], default), Constrained Opti-
mization BY Linear Approximation [10], Nelder Mead [11],
and Powell’s conjugate direct method [12]. The live plots
are shown on the right to follow the optimization in real time.
The evolution of the bunch length (upper plot in Fig. 3) and
the cost (lower plot in Fig. 3) cover the energy ramp. Markers
highlight the values at the end of each sub-interval.

A selection of two tests carried out to validate the tool
release is presented in the following. A short list (not ex-
haustive) of the configurations used for the scans is reported
in Table 1. While setting ranges are: 𝑎 ∈ [0.00, 1.00],
𝑚low ∈ [0.60, 0.70], and 𝑚high ∈ [0.95, 1.05].

Table 1: Setup for the optimization scans. The beam in-
jection time is 0 s and the ramp extends from 11.091 s to
20.739 s.

Configuration Value

Start time 15 s from injection
Stop time 19 s from injection
Tolerance 5%
Intensity per bunch 2.15 ⋅ 1011 ppb
Number of expected bunches 4 × 72 = 288

Scan of Three Settings on Two Sub-Intervals
In the first test, the three parameters (𝑎, 𝑚low, and 𝑚high)

were optimized in two sub-intervals with a target bunch
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length of 2.1 ns. The evolution of the settings and the cost
function along the optimization is shown in Fig. 4. For each
sub-interval, the initial settings, as well as the correspond-
ing cost, are highlighted by the diamond marker inside a
circle. The evolution followed during the optimization fol-
lows, according to the iteration number. The trend of the
cost function shows a reduction of the distance between the
calculated and the target bunch lengths in both sub-intervals.
The total number of iterations required is 28, 14 for each
sub-interval.
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(a) Settings along the scan on two sub-intervals.
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(b) Cost along the scan on two sub-intervals.

Figure 4: Automatic blow-up optimization for two sub-
intervals and three functions: amplitude (blue), margin low
(red), margin high (green), and objective function (magenta).

Scan of Two Settings on Three Sub-Intervals
The second scan features the optimization of two param-

eters (𝑎 and 𝑚low) during three sub-intervals. This choice
combines time resolution and efficiency. The target bunch
length is set to 2.0 ns since a lower bunch length at extraction
was required. Settings and costs collected throughout the
optimization process are shown in Fig. 5, similarly to the
previous example in Fig. 4. A significant improvement is
visible in each sub-interval, even if the most visible one is
achieved in the first sub-interval. The total number of steps
for solving the problem is 40. The first sub-interval takes
15, the second 16, and the last only 9.

In this second example, it is clear that increasing the num-
ber of sub-intervals leads to a rise in the total number of
iteration steps. However, more sub-intervals ensure a better
result in keeping the desired bunch length flat during the
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(a) Settings along the scan with three sub-intervals.
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(b) Cost along the scan with three sub-intervals.

Figure 5: Automatic blow-up optimization for three sub-
intervals and two functions: amplitude (blue), margin low
(red), margin high (green), and objective function (magenta).

entire blow-up interval. The trade-off between the time re-
quired for tuning the noise settings and keeping the bunch
length as flat as possible is necessary. With two and three
sub-intervals the results are satisfactory, i.e. the time re-
quired is acceptable as well as the bunch length evolution
along the blow-up interval. For a quicker scan, a single sub-
interval can be considered if a constant bunch length during
the blow-up is not required. Tests on four sub-intervals were
also performed, but the longer optimization time was penal-
izing excessively, for a limited improvement in the bunch
length trend.

ADVANCED STUDIES
By integrating the tool into the environment of the CERN

ML platform, the extension of the study to learning-based
algorithms has been straightforward. However, learning
methods require a sufficient amount of data for the train-
ing. The available data is not sufficient to fully train the
optimizer. Moreover, acquiring enough data to cover all set-
tings ranges is very time-demanding. A similar problem is
encountered in simulations: the amount of simulated data in-
creases together with the number of sub-intervals. Therefore,
a sample-efficient learning method is needed.

Preliminary Results with Bayesian Optimization
Bayesian optimization is a technique employed to opti-

mize complex and expensive objective functions, often en-
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countered in particle accelerators [13–15]. It combines prob-
abilistic modeling with acquisition functions to efficiently
search for the optimal solution while minimizing the num-
ber of function evaluations. BoTorch [16], a state-of-the-art
library built on top of PyTorch, offers a comprehensive and
well-benchmarked toolkit for Bayesian optimization. As
with other learning approaches, the optimization requires an
exploration-exploitation trade-off. Indeed, if the exploration
phase aims to select samples that adequately cover the search
space as much as possible, the exploitation phase focuses on
selecting samples close to the best value encountered.

A two-parameter scan (𝑚low and 𝑎) was performed with
a beam variant with 56-bunch trains and 1.9 ⋅ 1011 protons
per bunch (8b4e, mini-batches of eight bunches followed by
gaps of four empty bunch positions). The approach followed
in tuning the blow-up considers the total number of bunches.
The empty bunch positions and the number of batches can
be neglected. The start and the end of the blow-up interval,
as well as the percentage tolerance, are as in Table 1. The
target bunch length is 2.0 ns.

The exploration is performed over a set of six default
settings common to both the sub-intervals. To ensure the
coverage of the settings space, the training set is defined
through a grid search within the settings range. In a fixed
number of steps (ten) the model is exploited and improved
to optimize the blow-up. The total number of iterations is
therefore fixed to 34. The two additional iterations consist
of putting the optimal settings at the end of the scan of each
sub-interval. The results are summarized in Fig. 6.

The disadvantage of the Bayesian optimization relies on
the larger number of steps required. This could be overcome
by re-using data from previous optimizations to reduce the
exploration phase and defining convergence criteria to stop
the exploitation phase.

CONCLUSIONS
An operational tool to set up the controlled longitudinal

emittance blow-up in the SPS was developed and success-
fully run during machine development (MD) studies with
high-intensity multi-bunch LHC beams. The proposed study
extends the previous investigation on single-bunch beams to
multi-bunch beams by defining and implementing a simpler
cost function and an ad hoc approach to the problem. A
precise control along the acceleration ramp was obtained
by maintaining a low problem complexity and repeating the
scan for the desired sub-intervals thanks to the split and
optimize approach. Moreover, the configurations are cus-
tomizable via LSA and also easily adjustable directly from
the tool, to adapt to different acceleration cycles and beam
parameters. SPS operators can now profit from a robust and
reliable application to automatically set up the controlled
longitudinal emittance blow-up. Advanced studies were
started to integrate learning-based approaches. Promising
results were obtained by applying Bayesian optimization.
Despite the slightly higher number of iterations required, the
investigation of learning methods will continue to improve
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(a) Settings along the Bayesian optimization scan on two sub-
intervals.
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(b) Cost along the Bayesian optimization scan on two sub-intervals.

Figure 6: Bayesian optimization of the controlled blow-up
for two sub-intervals and two functions: amplitude (blue),
margin low (red), margin high (green), and objective func-
tion (magenta).

their efficiency.
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