19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUPDPO73

CAN MONITORING SOFTWARE FOR
AN ANTENNA POSITIONER EMULATOR

V. van Tonder*, G. Adams, M. Welz
South African Radio Astronomy Observatory, Cape Town, South Africa

Abstract

The original Controller Area Network (CAN) protocol,
was developed for control and monitoring within vehicular
systems. It has since been expanded and today, the Open
CAN bus protocol is a leading protocol used within servo-
control systems for telescope positioning systems. Devel-
opment of a CAN bus monitoring component is currently
underway. This component forms part of a greater soft-
ware package, designed for an Antenna Positioner Emulator
(APE), which is under construction.

The APE will mimic movement of a MeerKAT antenna,
in both the azimuth and elevation axes, as well as the posi-
tioning of the receiver indexer. It will be fitted with the same
servo-drives and controller hardware as MeerKAT, however
there will be no main dish, sub-reflector, or receiver. The
APE monitoring software will receive data from a variety of
communication protocols used by different devices within
the MeerKAT control system, these include: CAN, Profibus,
EnDAT, Resolver and Hiperface data.

The monitoring software will run on a BeagleBone Black
(BBB) fitted with an ARM processor. Local and remote
logging capabilities are provided along with a user interface
to initiate the reception of data. The CAN component makes
use of the standard SocketCAN driver which is shipped as
part of the Linux kernel. Initial laboratory tests have been
conducted using a CAN system bus adapter that transmits
previously captured telescope data. The bespoke CAN re-
ceiver hardware connects in-line on the CAN bus and pro-
duces the data to a BBB, where the monitoring software logs
the data.

INTRODUCTION

The MeerKAT radio telescope consists of 64 Gregorian
offset antennas, located in the Karoo desert of South Africa.
Any individual telescope can move in both the azimuth and
elevation axes to direct the telescope towards a specific astro-
nomical source. In the azimuth axis, the telescope can move
from -185° to +275°, where 0° points towards the North.
In the elevation axis, the telescope can move from 15° to
9°. The azimuth slew rate is 2°/s with 1°/s> acceleration
whereas the elevation slew rate is 1°/s with 0.5°/s> acceler-
ation. A cable wrap exists for rotation in the azimuth axis.
Each telescope is fitted with a rotating turret with four slots
for different receivers. Currently three receivers are fitted
onto the turret making the telescope receptive to UHF, L,
and S-band frequencies.

The telescope makes use of a servo-control system that has
been developed by CPI VERTEX ANTENNENTECHNIK

* vereese @sarao.ac.za
General

Device Control

GmbH (VA) [1]. The control system consist of an Antenna
Conditioning Unit (ACU) and Lenze 9400 driver units. The
driver units provide current for the motors. The azimuth
drive assembly consists of two servo motors that are electri-
cally torqued to avoid backlash. The controller uses three
loops to achieve tracking: current, velocity, and position.
There are various communication protocols involved in the
control system including Controller Area Network (CAN),
Profibus, EnDAT, Resolver and Hiperface data.

The Antenna Positioner Emulator (APE) project will con-
sist of the same ACU, Lenze driver units, encoders and mo-
tors that a MeerKAT antenna is fitted with. For this project
a monitoring system is currently being built and the CAN
communication bus is the first protocol to be supported.

CONTROLLER AREA NETWORK

We make use of the CANopen standard. The standard
CANopen frame consists of an 11-bit frame ID, a remote
transmission request (RTR) bit, followed by zero to eight
bytes of data. The 11-bit frame ID consists of a 4-bit code
to describe the functionality followed by a Node ID. Each
device in the CAN network must have a unique node ID [2].

Table 1 summarises the CAN bus node ID’s assigned to
the different drivers.

Table 1: CAN Bus Nodes

Drive Node ID
Azimuth 1 1
Azimuth 2 2
Elevation 5
Receiver indexer 9

In the control system, a function code of 0x180 has been
assigned to describe sensors. Each of the 0x180+CAN node
ID frame consists of the four sensors listed in Table 2.

Table 2: CAN Sensors

Sensor Data Length Data Offset
Status 1 0
Motor temperature 1 1
Torque 2 2
Rotor position 4 4
SOFTWARE ARCHITECTURE

The monitoring software will be implemented on a Bea-
gle Bone Black (BBB) which is an ARM based system.
The different software components will run as daemonized
processes. Each communication protocol exists in its own

TUPDPO73
673

©22 (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

entirety and are run as separate processes. The software
also consists of a logger component which can be config-
ured to rotate periodically. Both remote and local control
mechanisms exist.

Init common components:
Signal handlers
Resource handlers
Parse ini file

Create state machine

!

Init CAN components:
- Setup CAN parsers
from .ini file
- Create CAN sensors

Reconfig state
Rebuild resources
Rebuild CAN handle
Re-initialise

Figure 1: Flow and state diagram.

Figure 1 depicts the flow and state diagram of the CAN
monitoring software. Initially the common components are
setup. These are components which are available to all the
different communication protocols that will be monitored.
It includes creating signal handlers, creating resource han-
dlers, parsing the initialisation file, and creating the state
machine which starts in an init state. Next, the CAN handler
is initialised. This includes creating the CAN frame parsers
based on the initialisation file as well as creating the sensors
which will be logged.

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-TUPDPO73

One can first check that the CAN device is successfully
receiving CAN frames by using the 7cHECK START command
and state. This will not log any of the sensors but it will dis-
play the sensor outputs to screen. The TEST state is activated
by initiating the ?TEsT sTART command. This triggers the
logger to create the files and starts logging once CAN data is
available at the interface. One can move between cHECk and
TEST states. The CAN software can be reconfigured whilst
the program is up and running using the 7RECONFIG com-
mand which will destroy and rebuild all resources, including
the CAN data structures. The CAN receiver functionality
makes use of the SocketCAN package which ships with
standard Linux distributions.

TEST SETUP

Figure 2 depicts the system layout that was used during
initial tests. The hardware setup consists of a BBB, two
Lenze system bus adapters, custom SARAO CAN receiver
hardware, and a laptop. The BBB runs our custom soft-
ware explained above in order to parse and log the sensors
explained in the previous sections.

The transmit code uses text files of real data that was
captured on the telescope to simulate a CAN transmitter.
The telescope data was captured using a Lenze system bus
adapter along with the PCAN-VIEW software developed by
Peak systems. Data from both elevation and receiver indexer,
which are connected on one CAN bus, are collected whilst
moving the antenna in the elevation axis. The receiver in-
dexer is also moved between L- and UHF-band locations.
Afterwards, the Lenze system bus adapter was used to col-
lect data in the azimuth axis from both azimuth one and
two which is also connected on the same CAN bus. The
antenna location is changed and the speed is also increased
and decreased.

During the tests, it was noted that the motor temperature
was 26 °C. Upon analysing the data, we found a tempera-

[LenzePC-Systembusadapter F

APE Laptop
- Run transmit code
- Run PCAN view receiver

J —[USB /dev/pcan32 J

. O
£9
azZz
)
HE
g T
BBB 5%
- SocketCAN RX p9.24 ->
- Run custom dCAN1 Rx SARAO CAN
CAN receiver hardware
including
logging £9
[-%-4
3
c +
2z
53

—[USB /dev/pcan33]
[

[LenzePC-Systembusadapter F

ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

= TUPDPO73
()
674

Figure 2: Test setup in laboratory.

General

Device Control

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ture offset of 50 °C between data that was logged using the
PCAN-VIew software and what the system displayed us-
ing the Lenze diagnostic tool. Therefore, the linear offset
capability was inserted into the monitoring software.

CONCLUSION

The MeerKAT antenna positioner consists of multiple mo-
tors and servo drive systems in order to precisely postion the
antenna and receiver towards an astronomical source. Vari-
ous communication protocols exist in order to execute this
functionality. This project summarised the implementation
and initial tests of custom CAN monitoring software.

The relation between the logged motor temperature and ac-
tual temperature has been established to be a 50 °C constant

General

Device Control

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUPDPO73

offset. The relations between the actual and logged torque
and rotor position remains as future work. Furthermore,
the Profibus, EnDAT, Resolver and Hiperface monitoring
software needs to be implemented and tested.

REFERENCES

[1] System Description Document: 13.5 m MeerKAT Dual Offset
Antenna, Technical report, CPI VERTEX ANTENNENTECH-
NIK GmbH (VA), Duisburg, Germany, Oct. 2014.

[2] U. Koppe, “TD-03011E Identifier Usage in CANopen Net-
works”, Technical report, MicroControl GmbH & Co. KG,
Troisdorf, Germany, 2003. https://www.microcontrol.
net/wp-content/uploads/2021/10/td-03011e.pdf

TUPDPO73
675

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

of
©

