
MONITORING THE SKA INFRASTRUCTURE FOR CICD
M. Di Carlo∗, M. Dolci, INAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy

U. Yilmaz, P. Harding, SKA Observatory, Macclesfield, UK
P. Osório, Atlar Innovation, Portugal

J. B. Morgado, CICGE, Faculdade de Ciências da Universidade do Porto, Portugal

Abstract
The Square Kilometre Array (SKA) is an international

effort to build two radio interferometers in South Africa
and Australia, forming one Observatory monitored and con-
trolled from global headquarters (GHQ) based in the United
Kingdom at Jodrell Bank. The selected solution for monitor-
ing the SKA CICD (continuous integration and continuous
deployment) Infrastructure is Prometheus with the help of
Thanos. Thanos is used for high availability, resilience, and
long term storage retention for monitoring data. For data vi-
sualisation, the Grafana project emerged as an important tool
for displaying data in order to make specific reasoning and
debugging of particular aspect of the infrastructure in place.
In this paper, the monitoring platform is presented while
considering quality aspect such as performance, scalability,
and data preservation.

INTRODUCTION
The Square Kilometre Array (SKA) project has selected

SAFe (Scaled Agile Framework) as an incremental and it-
erative development process. A specialized team – named
System Team – is devoted to support the Continuous Integra-
tion, Continuous Deployment (CI/CD) [1], test automation,
and the project components’ quality. Building an infras-
tructure to support the CI/CD together with a monitoring
solution, was one of the first goals of the team.

The SKA infrastructure consists of a standard footprint of
VPN/SSH gateway, monitoring, logging, storage and Kuber-
netes [2] services tailored to support the GitLab [3] runner
architecture that is shown in Fig. 1. Furthermore, this in-
frastructure is used to support Development and Integration
testing facilities for the project’s many subsystems. The
selected logging solution is Elasticsearch [4], storage is han-
dled through Ceph [5], while Prometheus [6] handles moni-
toring (see the Prometheus section below), and the (central)
artefact repository (CAR) is Nexus [7]. It is important to
realize that only artefacts produced by GitLab pipelines that
have been marked for a release (i.e. triggered by a git tag),
are allowed to be stored on the CAR. On all other cases,
GitLab’s own artefact repository is used.

The infrastructure shown in Fig. 1 is replicated in multiple
locations spread over different continents, with specific hard-
ware on top of OpenStack [8] or bare metal/virtual machine
instances. Meaning, that for every infrastructure, the same
components will be present – at a different scale depend-
ing on the available resources. Some components, such as
∗ matteo.dicarlo@inaf.it

Elasticsearch and Thanos, exist on a single location, cen-
tralizing the access to information of several data centres to
allow aggregated analysis across different datacentres while
reducing the maintenance overhead.

Figure 1: Simplified infrastructure.

PROMETHEUS
The selected monitoring solution, for every infrastruc-

ture, is Prometheus. It works in client-server architecture,
where Prometheus acts as a client that reads (*scrapes* in its
domain-specific language) timestamped information from
multiple servers – called targets or exporters. The data is
stored on a disk in TSDB format [9] and pushed to an object
store. Figure 2 shows a detailed diagram that illustrates the
monitoring architecture on SKA. The main components of
the diagram are:

• Prometheus server, which is composed by the scraper,
the TSDB storage, an HTTP API, and Web interface
for data querying;

• Thanos, which is composed by many different com-
ponents to help with high availability, data retention,
retrieval and long term storage;

• Jobs/exporters, where Prometheus scrapes informa-
tion as a time series;

• Grafana, as a data visualization and export tool that
integrates with Prometheus/Thanos using PromQL – a
specific query language;

• Altermanager, that delivers alarm notifications to end-
user systems;

Each exporter provides a time series uniquely identified by
its metric name and some optional key-value pairs – called
labels. It is important to note that the exporter must give an

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP045

TUPDP045

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

622

Software

Control Frameworks for Accelerator & Experiment Control



Figure 2: Detailed Monitoring Architecture.

extensive amount of information about the system that it is
monitoring, usually under a single metrics endpoint.

Prometheus was adopted mainly due to its scalability,
modifiability and optimal usage of resources – with memory
allocation optimized to use the minimum amount required –
as well as the very complete ecosystem of tools revolving
around it. Because of the memory allocation optimizations,
scaling is usually done vertically (i.e. adding more resources
to the existing system) but it is also possible to have a feder-
ation of them, resembling horizontal scaling. This way, it is
possible to have servers devoted to monitoring specific parts
of the infrastructure, being a crucial aspect when dealing
with multiple physical locations, and improving latency both
when scraping and querying data.

Exporters
One of the most important quality of the Prometheus

monitoring solution is its modifiability. This modifiability,
makes it very easy to add new exporters since they are single-
endpoint HTTP servers with well-structured data. The sim-
plicity of exporter integration with the Prometheus solution
is key to a consolidated monitoring platform. Aside from
the extensive list of third-party exporters, it is possible to
build custom ones (i.e. for an application), with multiple

programming languages already having libraries to help on
their development. This means we can monitor full-fledged
clusters to simple parts of an application or a database, using
the exact same resources and protocols.

In the SKA, a set of well known exporters has been se-
lected to be deployed – or enabled – on each node of the
infrastructure. Most importantly, we make use of:

• Node exporter [10];

• Container runtime metrics: enabled depending on the
runtime (containerd, docker or podman);

• Kubernetes [2] exporters using kube-state-
metrics [11];

• Elasticsearch metrics [4];

• Ceph metrics [5];
The configuration of the exporters on the Prometheus

server, happens with the help of a Python script (prom-
helper) [12]. The script runs discovery queries on every
node of the infrastructure inventory [13], creating JSON
configuration files (targets in Prometheus domain-specific
language) for each exporter type, including the discovered
targets. Prometheus runs as a containerized application,
using persistent storage for the data and configurations.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP045

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP045

623

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Alerts
A critical part of the monitoring solution selection is the

ability to alarm the maintainers (System Team) of any prob-
lems in the infrastructure. Alertmanager and Prometheus
work together to deliver detailed alarms on the multiple mon-
itored infrastructures to communication channels. As multi-
ple infrastructures are monitored, it is crucial that the alarm
system allows for the de-duplication and grouping of alarms,
as well as the capability to deliver the notifications to differ-
ent communication channels. Community-developed alarm-
ing standards were adopted, as the kubernetes-mixin [14],
enabling an in-depth alarming system of open-source prod-
ucts. Also, some custom exporters were developed to expose
metrics on custom-built Kubernetes Operators. Figure 3
shows an example alarm notification.

Figure 3: An alert message in Slack [15] for the Mid Proto-
type System Integration (PSI MID) cluster.

THANOS
Thanos is an open source project that provides global

query views, high availability and long term data storage
with historical querying capabilities [16]. Thanos is able
to store data from multiple Prometheus instances, allowing
queries to target multiple data-sources. It has several compo-
nents targeted towards data replication, storage integration
and centralised load-balanced query functions with support
for encrypted data over public network – (see Fig. 2) for
some highlights on how they are used in SKAO. The details
of each thanos component is highligted in Fig. 4. Its main
components and how they are used on SKA are explained
below.

Figure 4: Thanos Architecture.

• Thanos Sidecar is the main component. It queries
Prometheus, makes it available for querying, and up-
loads TSDB (Time series database) blocks to Thanos’
target object store. This is deployed next to each
Prometheus instance.

• Thanos Receiver is used if the sidecar cannot be de-
ployed. This is mostly due to network rules in the data-
centre. It accepts data from Prometheus using remote-
write API, makes it available for querying, and uploads
TSDB (Time series database) blocks to Thanos’ target
object store. This can be deployed anywhere.

• Thanos Store Gateway provides a store API on top of
the historical data present on the object store;

• Thanos Ruler is the equivalent of Prometheus Ruler.
Used to manage Thanos’ rules. Note that this is not
used in SKAO as the alerts are differentiated by their
own alertmanagers in each datacentre;

• Thanos Compactor is responsible for down-sampling
and data retention for efficient long term storage;

• Thanos Querier aggregates, de-duplicates the under-
lying data, and implements the Prometheus API;

• Thanos Query Frontend is a proxy to Thanos Queries,
that improves range queries to the API by splitting and
caching previous results;

The ability to use push or pull methods to collect Thanos
Sidecar data, allows for different infrastructural and security
requirements to be met, while maintaining the capability of
accessing the data outside of premises. Being the SKA a
globally distributed project, it is crucial to be able to access
the data from multiple global locations, empowered by the
replications features of the object store. Furthermore, the
setup and access of user-level tools, like Grafana, to the
stored data, is greatly simplified by these capabilities while
the user experience is improved by using caching techniques
while allowing aggregated dashboards to perform analysis
from an single view.

GRAFANA
Prometheus API, uses the HTTP protocol, with a well-

structured and simple format. Thus, it becomes simple to
integrate with other systems using PromQL, which is par-
ticularly important for data analysis and visualization. The
de facto visualization tool is Grafana [17]. which, by itself,
can also have multiple data-sources other than Prometheus.
It is remarkable the modularity and completeness of the
Prometheus ecosystem as a fully-featured and open-source
monitoring solution. Visualization is organized in dash-
boards, composed of reusable display panels. Dashboards
usually target a particular source type (e.g., node metrics,
kubernetes metrics), but the reusable panels can be used to
build a global overview dashboard of the whole infrastruc-
ture. From an architectural point of view, it is built with a
plugin architecture where a plugins can be:

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP045

TUPDP045

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

624

Software

Control Frameworks for Accelerator & Experiment Control



• Panels (the basic visualization building block in
Grafana), that transform raw data from a data-source
into complex visualizations (e.g., maps, clocks, pie-
charts);

• Data-sources that target external systems, retrieving
the data from the upstream data-source, and reconciling
the differences between the external and Grafana’s data
model;

• Apps that combine both data-sources and panels to
visualize in a cohesive manner.

This architecture can be personalized extensively, correlat-
ing different data-sources, giving developers and testers the
ability to diagnose system-wide problems. Figure 5 shows
the resulting model in UML. Grafana represents an aggrega-
tion of plugins and multiple dashboards (a collection of pan-
els). Data-sources can be Thanos or Prometheus instances
that themselves collect data on several other data-sources,
or directly other external, whenever historical storage is not
required. In SKA, the TANGO Archiver [18] database or
the Elasticsearch cluster are monitored this way.

Figure 5: Grafana UML model.

DASHBOARDS
The core tools and services that support the SKA infras-

tructure have community-developed dashboards, as it has
alarming standards, displaying information that empower
health and performance analysis on the entire CI/CD infras-
tructure. In this section we present some of the dashboard
that were adopted for the various data-sources: Figs. 6, 7,
and 8 show some dashboards adopted from the Grafana
community:

• Node exporter [19],

• Elasticsearch cluster [20],

• Docker containers [21],

Figure 9 shows a dashboard provided by the kubernetes-
mixin [14] project.

Having alarms and visualizations on the same data,
it becomes possible to track down causes for issues on

Figure 6: Node exporter dashboard.

Figure 7: Elasticsearch dashboard for cluster health.

Figure 8: Docker metrics dashboard for container health.

Figure 9: Kubernetes pods dashboard per node.

pieces of the infrastructure that might not apparently re-
late. Application-level components may malfunction due to
system-level components misbehaving, and the capability to
display performance-level metrics of multiple systems, can
helps shed light on root-causes.

GLOBAL VIEW OF INFRASTRUCTURE
OPERATIONS

The SKA has the particularity of being a globally-
distributed project, as data might be needed in a different
part of the world than it was collected or stored. Therefore,
it becomes paramount that the monitoring system allows
to deliver data across the globe, efficiently. Looking at the
monitoring system as three main components - collection,
storage and access/querying - the selected tools allow to
distribute the workload to realize them in a global scale,
maintaining high-performance on all planes.

• Prometheus collects metrics on several systems, lo-
cally or within public realms;

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP045

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP045

625

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



• Alertmanager delivers real-time alarm notifications
on monitored systems, to multiple communication plat-
forms;

• Thanos collect metrics from several infrastructures,
consolidating the data for long-term storage securely.
It also allows data to be replicated across locations and
accessed with low latency;

• Grafana allows data to be visualized and correlated
data between different systems of the same (or other)
infrastructures;

Together these tools allow a global oversight on multiple
pieces of infrastructure, while allowing for different infras-
tructural requirements to be met and integrated in a central-
ized (yet distributed) monitoring solution.

CONCLUSION AND FUTURE WORK
This paper presented an overview of the tools selected

by the SKA project in order to monitor the performance
of the infrastructure put in place for CI/CD purposes. In
specific Prometheus with Thanos and Grafana have been
selected for this scope. The main rationale for this choice is
the modularity of the several tools withing the Prometheus
ecosystem (custom exporters, data-sources and visualiza-
tions), together with performance efficiency (optimal usage
of memory allocation) and scalability (vertical only at the
moment). Another important aspect to consider in the selec-
tion, is the outstanding community around them, keeping
them active a feature-rich.

The metrics gathered and displayed on the dashboards are
available for a long periods of time (3 months at the moment)
and are available from different parts of world to developers,
scientists and engineers.

ACKNOWLEDGEMENTS
This work has been supported by Italian Government

(MEF - Ministero dell’Economia e delle Finanze, MIUR -
Ministero dell’Istruzione, dell’Università e della Ricerca).

REFERENCES
[1] M. Di Carlo et al., “Ci-cd practices at SKA”, Proc. SPIE,

Software and Cyberinfrastructure for Astron. VII, vol. 12189,
Aug. 2022. doi:10.1117/12.2620526

[2] Kubernetes, https://kubernetes.io/

[3] Gitlab, https://about.gitlab.com/

[4] Elasticsearch, https://www.elastic.co/

[5] Ceph storage, https://ceph.io/

[6] Prometheus, https://prometheus.io

[7] Nexus, https://www.sonatype.com/products/
sonatype-nexus-repository

[8] OpenStack, https://www.openstack.org/

[9] Tsdb format, https://github.com/prometheus/
prometheus/tree/release-2.22/tsdb/docs/format

[10] Node exporter,
https://github.com/prometheus/node_exporter

[11] kube-state-metrics,
https://github.com/kubernetes/
kube-state-metrics

[12] Prometheus Helper Script, https:
//gitlab.com/ska-telescope/sdi/
ska-ser-ansible-collections/-/blob/main/
ansible_collections/ska_collections/
monitoring/roles/prometheus/files/helper/
prom_helper.py?ref_type=heads

[13] Ansible, https://www.ansible.com/

[14] Prometheus monitoring mixin for kubernetes,
https://github.com/kubernetes-monitoring/
kubernetes-mixin

[15] Slack, https://slack.com

[16] Thanos, https://thanos.io

[17] Grafana, https://grafana.com/

[18] Tango Archiver, https://gitlab.com/ska-telescope/
ska-tango-archiver

[19] Node exporter full, https://grafana.com/grafana/
dashboards/1860-node-exporter-full/

[20] Elasticsearch dashboard,
https://grafana.com/grafana/dashboards/
878-elasticsearch-dashboard/

[21] Docker and system monitoring, https://grafana.com/
grafana/dashboards/893-main/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP045

TUPDP045

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

626

Software

Control Frameworks for Accelerator & Experiment Control


