19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-TUPDPOO1

WORKING TOGETHER FOR SAFER SYSTEMS: A COLLABORATION
MODEL FOR VERIFICATION OF PLC CODE

Ignacio D. Lopez-Miguel*, TU Wien, Vienna, Austria,
Borja Fernandez Adiego*, Enrique Blanco Vifiuela, CERN, Geneva, Switzerland,
Matias Salinas, Christine Betz, GSI, Darmstadt, Germany

Abstract

Formal verification techniques are widely used in critical
industries to minimize software flaws. However, despite the
benefits and recommendations of the functional safety stan-
dards, such as IEC 61508 and IEC 61511, formal verification
is not yet a common practice in the process industry and
large scientific installations. This is mainly due to its com-
plexity and the need for formal methods experts. At CERN,
the PLCverif tool was developed to verify PLC programs
formally. Although PLCverif hides most of the complexity
of using formal methods and removes barriers to formally
verifying PLC programs, engineers trying to verify their
developments still encounter different obstacles. These chal-
lenges include the formalization of program specifications
or the creation of formal models. This paper discusses how
to overcome these obstacles by proposing a collaboration
model that effectively allows the verification of critical PLC
programs and promotes knowledge transfer between organi-
zations. By providing a simpler and more accessible way to
carry out formal verification, tools like PLCverif can play a
crucial role in achieving this goal. The collaboration model
splits the specification, development, and verification tasks
between organizations. This approach is illustrated through
a case study between GSI and CERN.

INTRODUCTION

Programmable Logic Controllers (PLCs) find extensive
utilization in industrial automation, encompassing safety
and standard control systems not only at establishments like
CERN and GSI but also within diverse process industries
and other scientific installations. The incorrect behavior
of the PLC programs can yield considerable repercussions,
such as property damage, environmental harm, or, in cer-
tain instances, even personal injuries. Consequently, the
assurance of their accurate functionality holds paramount
importance. Although testing has long been the conven-
tional means of validating PLC programs, its effectiveness
often falls short as the sole verification method. Even when
automated, testing cannot achieve exhaustive coverage and
thus lacks the ability to guarantee the absolute correctness
of a given logic. Certain categories of requirements, such as
safety specifications (which demand the prevention of unsafe
states) or invariants (formulas that must hold throughout all
conceivable system runs), can pose substantial challenges
and might even be unfeasible to assess through testing alone.

* ignacio.lopez@tuwien.ac.at
¥ borja.fernandez.adiego@cern.ch

General

Management/Collaboration/Human Aspects

Model checking is a formal verification technique that
complements the testing activities to fully validate and verify
PLC programs. It involves evaluating the fulfillment of
formalized requirements upon a mathematical model of the
system under scrutiny. This assessment encompasses every
feasible combination of inputs and all potential execution
paths. Additionally, if a violation is found, the technique
provides the path leading to the breached requirement.

The broad adoption of model checking in the realm of
PLCs encounters a two-fold challenge: Firstly, creating the
mathematical model that represents the system being ana-
lyzed can require an in-depth understanding of the model-
checking tools. Secondly, a multitude of real-life PLC logics
are characterized by their complexity, leading to what is
known as state-space explosion problem, that is, a large
number of potential input combinations and execution paths
that exceed the bounds of exhaustive exploration.

In September 2020, CERN released the PLCverif plat-
form under an open-source license, aiming to facilitate the
utilization of model-checking tools among PLC developers.
This goal was achieved by automating the conversion of
PLC programs into their corresponding mathematical mod-
els. Subsequently, a series of abstraction algorithms were
integrated to address the state-space explosion challenge.

However, the incorporation of model-checking tools into
the design and development process is far from simple, en-
countering various challenges. Large projects involve dis-
tinct teams that must engage in clear and unambiguous com-

munication. Thus, achieving this integration is not trivial, .

particularly when the initial specifications are not formalized
and lack precision. These specifications are usually written
using natural language. Consequently, when the PLC de-
veloper implements the specifications, they must interpret
these instructions, potentially resulting in a PLC program
that deviates from the initially envisioned design conceived
by the team responsible for creating the specifications.

Through collaborative efforts, by exchanging expertise
and tools, constructing safe systems can become more viable.
Such a collaboration took place between CERN and GSI,
wherein CERN helped GSI to formalize requirements and
to formally verify their PLC code.

Upon termination of the collaboration, a number of dis-
crepancies between the specification and the PLC code were
found. This discovery enhanced the understanding of safety
engineers and PLC developers at GSI about the function-
ing of their PLC programs. It enabled them to refine the
specification, rectify errors, and improve the system overall.
Moreover, this collaboration yielded advantages for CERN

TUPDPOOL1
467

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Specification

Assertion,
pattern, or FRET

‘ Form. requirement
1
Reductions and

transformations
L,

‘ Control-flow automata ‘

‘ Model checker execution }

‘ Verification report ‘

Figure 1: Workflow of the verification process utilizing
PLCverif.

since it led to enhancements in the PLCverif tool.

The aim of this paper is to introduce this innovative col-
laboration and its results, with the intent of inspiring other
institutions or enterprises to embark on a similar trajectory
and build safer systems.

The rest of the paper will present an overview of the
PLCverif framework (section PLCverif), a description of
the Collaboration model developed (section Collaboration
model), a specific GSI case study presenting the work and
results (section GSI case study), and finally a Conclusion
summarising improvements that emerged from this work
and an outlook to the future (section Conclusion).

PLCVERIF

PLCverif! [1, 2] stands as a flexible and expandable frame-
work born at CERN. Its purpose is to facilitate the formal
verification of PLC programs. The framework is designed
to be customizable and is built upon a plugin architecture.

The verification process using PLCverif is depicted in
Figure 1 [2, 3]. The process begins with the transformation
of the initial specification into a set of formal requirements.
There are three potential pathways for this formalization: (i)
representing the requirements as assertions, which will then
be directly embedded into the PLC code, (ii) integrating the
necessary variables and conditions into patterns (pre-defined
templates), or (iii) utilizing FRET to express the requirement
in a structured natural language, a recent integration of the
NASA Formal Requirements Elicitation Tool (FRET)? [4,
51

Subsequently, both the PLC code and the formalized re-
quirements undergo translation, creating an intermediate
model. This model is represented as a collection of control-
flow automata (CFA) [6]. Certain reductions and transforma-
tions are performed to simplify the model. The next phase
involves the execution of a model checker, an external tool
that generates a counterexample if the property is violated,
i.e., a combination of the input variables that leads to a vio-
lation of the property. The verdict of the verification and the

I PLCverif is available on https://gitlab.com/plcverif-oss.
2 FRET is available on https://github.com/NASA-SW-VnV/fret.

TUPDPOO1
468

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-TUPDPOO1

TIA Portal .
K verified program
PLC program

Form. verification
, engineers

developers
PLC program

Figure 2: Diagram depicting the different roles of the col-
laboration, which information is shared, and which tools are
used.

counterexample (in case of violation) are presented to the
user in an intuitive and comprehensible verification report.

PLCverif has been used successfully in the verification of
various complex safety-critical systems [7-9].

COLLABORATION MODEL

This section describes the proposed collaboration model,
including the roles of the collaboration members, examples
of how specifications of safety-critical PLC programs should
be written according to the functional safety standards, and
the kind of results that formal verification can bring to the
project.

Roles

Figure 2 depicts the proposed collaboration model. It is
composed of the following roles:

» Specification engineers. They comprise control and
safety experts with extensive knowledge of systems
and processes. Due to this expertise, they are responsi-
ble for analyzing the systems and writing their techni-
cal specifications. They can use different formalisms
or tools to specify requirements, as detailed in sub-
section Specification. These methods include cause-
and-effect matrices, I/O matrices, and state machines,
allowing them to define and document the project’s
specifications unambiguously.

* PLC program developers. They receive the require-
ments from the specification engineers and implement
them in a PLC program. The code they produce should
be modular, maintainable, and well-documented.

» Formal verification engineers. Given the specification
and the PLC code, they verify that the latter behaves
exactly as written in the specification. This verification
is done with PLCverif. If there are discrepancies, they
suggest fixes and help to improve the specification and
the understanding of the behavior of the PLC program.

There are many reasons to structure this collaboration in
this way. It comes from the typical scenario where separate
teams handle specification and code creation. Therefore,
a clear distinction between these two entities is essential.

General

Management/Collaboration/Human Aspects

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Software safet; A
. Y Validation
requirements .
. . testing
specification

~ ‘ Integration
Software

R testing
architecture
— (components)

Integration
testing (module)
Module
testing

E/E/PE system
safety

Validated
software

requirements
specification

E/E/PE system
architecture

[Software
system design

Module
design

3

— Output
--~ Verification

Figure 3: Software systematic capability and the develop-
ment life cycle (the V-model), cf. [10].

While advancements like PLCverif hold the potential to
bridge this gap in the future, our experience shows that PLC
developers do not use formal verification in their PLC pro-
gram development process yet. This, together with technical
barriers and lack of background in formal verification, im-
plies that the most optimal way to use formal verification is
to have an external team that takes on this role.

The formal verification team should try to involve the
other counterparts as much as possible to ensure their efforts
are precisely aligned. This collaborative dynamic facilitates
the exchange of expertise, leading to a point where, by the
collaboration’s culmination, internal personnel can indepen-
dently execute verification tasks without external guidance.

The final deliverable at the end of the collaboration should
yield a set of reports detailing the properties violated by the
given code and suggestions for remedies. This is an iterative
process, in which formal verification engineers will reevalu-
ate the amended specification and code, reinitiating the veri-
fication process until all errors are successfully addressed.
This refinement would lead to an error-free verification.

This collaboration is fully compliant with the well-known
V-model for software development. The IEC 61508-3 func-
tional safety standard [10] recommends the use of the V-
model when describing the software life-cycle requirements
for safety systems (Figure 3). It is a framework used in soft-
ware engineering to guide the specification and validation
processes. It illustrates the relationship between different
phases of software specification (left side) and their corre-
sponding validation phases (right side).

The V-model promotes testing alignment with the corre-
sponding specification activities, leading to a well-structured
and well-tested software product. It emphasizes the impor-
tance of testing at each stage of development, aiming to
catch defects early in the process and reduce the likelihood
of major issues arising in later stages.

This aligns precisely with the central focus of verification
within software development. Its purpose is the identifica-
tion of deficiencies at the early stages of the development
process, facilitating rapid resolution. This helps to perform
a much faster testing phase, yielding fewer errors. It is im-
portant to note that verification is not intended to replace

General

Management/Collaboration/Human Aspects

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-TUPDPOO1

Table 1: Example of a CEM representing when the output
signal Out_1 has to be true. A disjunctive expression is
created from the two clauses Al and A2. Al is a conjunction,
and A2 is a conjunction whose elements are negated.

Outputs
Out_1 | Out_2
In_I | Al Al
£/ In2| Al Al
2] In3| NA2 | Al
In4 | NA2 | Al

Table 2: Example of an I/O matrix representing when the
signals Out_1 and Out_2 shall be set or reset according to
the inputs. The specification can be ambiguous if the inputs
are not mutually exclusive or their priority is not defined.

Outputs
Out_1 | Out_2
@ In_ 1 | Reset | Reset
2| In2 Set Reset
S| In3 | Set Set

testing, but rather to serve as a valuable complement.

In Figure 3, the verification activities undertaken during
the collaboration can be situated within the realm of module
testing. This occurs at the earliest possible stage after code
development. Identified problems in the specification or the
code at this point can be easily amended.

In some situations, errors appear during operation, incur-
ring substantial costs or even severe accidents and neces-
sitating the reiteration of numerous steps. These types of
errors can often be detected by verification in an early phase
of the development process, as it excels in uncovering prob-
lems arising from corner cases. Thus, verification can not
only help to develop safer code, but it can also profoundly
influence cost reduction in the development process.

Specification
Diverse formal representations were used to represent
different requirements. These representations must possess
qualities of simplicity, clarity, and conciseness. This is im-
perative to effectively capture the requirements and stream-
line the processes of designing, implementing, and verifying
PLC programs.
Some of the possible formalisms recommended by the
functional safety standards are listed below.
* A Cause and Effect Matrix (CEM) [11] is a concise and
intuitive graphical depiction of Boolean expressions.
It is particularly suitable for stateless logic, where out-
puts are solely influenced by combinations of current
input signals. CEM is widely embraced for specifying
interlock logic. Variants of CEMs exist, and companies
often adopt the semantics that align with their processes
and engineering approaches. Some PLC manufactur-
ers, such as Siemens, have incorporated CEM into their
engineering tools, exemplified by the SIMATIC Safety

TUPDPOOL1
469

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

o

©)

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Matrix. The exemplary CEM from Table 1 represents
in a compact way the conditions to make the output
variables Out_1 and Out_2 true. Its equivalent logic
formulas are

Out_1 = (In_I NIn_2) v (=In_3 A =In_4),

4
Out_2 = /\ In_i.
i=1

* An input-output matrix (I/O matrix) depicts the rela-
tionship between input variables and output variables in
a systematic way. It can be used to represent the trans-
formation applied to input signals to produce output
signals, which is particularly useful when dealing with
systems that process multiple signals simultaneously.
With this formalism, one needs to be sure that the in-
puts are mutually exclusive or to specify their priorities.
The I/O matrix from Table 2 gives the conditions to set
or reset the output signals Out_1 and Out_2 according
to some given inputs.

* A state machine is a graphical representation used to
depict the behavior of a system that undergoes distinct
states and transitions between them. It consists of states
representing the various conditions or phases the sys-
tem can be in and transitions illustrating how the sys-
tem moves from one state to another based on certain
conditions. They provide a clear overview of system
behavior and help design, analyze, and document com-
plex processes or systems. Figure 4 shows a simple
state machine that changes from two modes depending
on the requests. For a real example, one can refer to
Figure 4.4 from [12].

* A logic diagram is a visual and formal representation
of logical relationships and conditions. It represents
an electronic circuit designed to perform logical oper-
ations based on input signals and produce output sig-
nals according to predetermined logic rules. It utilizes
various logic gates, which are basic building blocks
that manipulate Boolean signals according to logical
operations such as AND, OR, NOT, and XOR. It is
especially useful for requirements that involve condi-
tions, constraints, or logical dependencies. At CERN,
grassedit? is an ongoing project that facilitates the cre-
ation and simulation of logic diagrams. The tool also
automatically generates assertions to insert in PLCverif
directly from grassedit diagrams. An example of a logic
diagram is depicted in Figure 5, where the following
formula is represented: Out_I = (In_1vIn_2) Aln_3.

* An assertion is a condition used to express the expected
behavior or a specific property of a program at a par-
ticular point in the code’s execution. Although this is
typically used during software development, it can be
used to formalize a given requirement. They are particu-
larly helpful in expressing safety properties, i.e., a state
can never be reached. They are then easily transferred

3 Grassedit is available on https://grassedit.web.cern.ch/.

TUPDPOO1
470

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-TUPDPOO1

- Request__Mode_2 — Request_Mode_1

Request__Mode_1

Request__Mode_2

Figure 4: Example of a state machine that indicates how a
system transitions from one mode to another.

2>
In 2 Out_1
r

In_3

Figure 5: Logic diagram, specifying when the output signal
Out_1 has to be true.

into PLCverif. Assertion 1 has the same meaning as
the first row of the I/O matrix of Table 2.

Assertion 1 If In_1 is true, then Out_1 shall be reset, and
Out_2 shall be reset.

Furthermore, CERN made an effort to formally specify
PLC programs, resulting in PLCspecif [13]. It combines
different formalisms, such as state machines, I/O matrices,
and invariants (assertions).

The IEC61511-2 standard [14] provides guidelines and
examples for applying this IEC61511-1 Clauses. Part 2 ref-
erences the specification methods CEM, state machines, and
logic diagrams. For instance, Annex F (Example SIS project
illustrating each phase of the safety life cycle with appli-
cation program development using relay ladder language)
shows the usage of CEM to describe the Application Pro-
gram requirements. Annex A (Guidance for IEC 61511-1)
mentions the usage logic diagrams for detailed functional
safety requirements for each Safety Instrumented Function
(SIF). Annex B (Example of SIS logic solver application
program development using function block diagrams) gives
an example of how to use state machines.

Verification

PLCuverif is used to verify that the specification is aligned
with the code. Different discrepancies can be found during
the collaboration, which can classified as follows:

* Specification findings. There is a disparity between the
specification and the implementation. However, the
implementation aligns with the intended goals of the
safety engineers. The resolution entails modifying the
specification.

» Implementation finding. The specification is accurate,
but a bug exists in the implementation. The predom-
inant issue often comes from alterations in priorities.
The solution involves amending the code.

* Documentation finding. The meaning of the speci-
fication is correct, yet minor errors are present, like
typographical mistakes (incorrect variable names) or
incomplete coverage of possible scenarios. The remedy
involves revising and updating the specification.

General

Management/Collaboration/Human Aspects

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

GSI CASE STUDY

FAIR is an international accelerator facility dedicated to
research involving antiprotons and ions. This collaborative
endeavor involves international partners and is presently in
development at the GSI Helmholtzzentrum fiir Schwerionen-
forschung.

The Personnel Access System (PAS) at FAIR [15] prevents
personnel from entering areas exposed to particle beams and
their radiation, so-called NE-Areas. It handles the challenge
of numerous accessible zones efficiently by allowing beam
operations in some areas while personnel accesses others.
Additionally, for hazards like electricity, RF, and lasers, the
PAS permits access only to authorized personnel and acti-
vates safety measures.

Only a few components along the beamline can quickly
and specifically stop beam operation in a designated NE-
Area without affecting the entire facility. These critical
components are known as Important Safety Elements (ISE).
A collection of ISE that halt beam operation in a specific
NE-Area is called a Beam Off Group (BOG) for that area.

The PLC program designed for PAS is developed using
TIA Portal [16], Siemens’ proprietary platform for PLC
program development. This PLC program is modular, and
highly configurable, making it possible to use it in all NE-
Areas by only changing its configuration variables. Model
checking can verify the properties for all the configurations.

Nevertheless, since TIA Portal is a private platform, the
precise workings of numerous functions are safeguarded
as proprietary know-how (built-in functions). To verify
the PLC program with PLCverif, it becomes necessary
to conceptualize these behaviors in a structured manner.
Consequently, this modeling process is intricate and labor-
intensive. Particularly challenging are functions that involve
timing aspects, as they require the propagation of signal
values across successive PLC execution cycles.

To tackle this challenge, a method involving TTA Portal
simulations was employed to understand the behaviors of
these functions. Following this, the PLCverif models were
subjected to verification. Using this approach ensures that
the formal models conform to the behavior exhibited by the
original Siemens’ built-in functions, thus providing a for-
mal assurance of their equivalence. Some of the functions
whose behavior was replicated include CTUD (up and down
counter), ESTOP1 (Emergency STOP/OFF up to stop cat-
egory 1), F-I/O passivation and reintegration, FDB_TIME
(feedback time), and FEEDBACK [17].

The collaboration between CERN and GSI identified a
number of disparities between the specification and the PLC
code. For the BOG PLC program, there were 9 specification
findings, 8 implementation findings, and 9 documentation
findings.

CONCLUSION

The collaboration model presented in this paper to apply
formal verification techniques to critical PLC programs out-
lines a win-win situation for all the counterparts. It helps

General

Management/Collaboration/Human Aspects

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-TUPDPOO1

specification engineers and PLC developers deepen their
understanding of their PLC programs’ behaviors. It enables
them to refine specifications, address errors, and bring com-
prehensive system enhancements. They also acquire techni-
cal knowledge from the formal verification engineers, and
by the end of the collaboration, they are able to perform the
verification tasks independently. Furthermore, formal veri-
fication engineers also take advantage of this collaboration
through enhancements to the PLCverif tool.

The case study shown in this paper was divided between
CERN and GSI according to the expertise and needs of
each organization. However, it is important to emphasize
that collaborations between different institutions might take
diverse forms based on their strengths and objectives. The
key takeaway is that engaging in partnerships with other
entities to enhance the safety of systems through formal
verification is both feasible and advantageous.

Such collaborations can lead to the pooling of knowledge,
resources, and insights from various sources, fostering a
richer understanding of safety-critical systems. By working
collectively, institutions can tackle complex challenges and
ensure that formal verification practices are effectively inte-
grated into their processes. This not only enhances the safety
of the systems but also promotes the sharing of best prac-
tices and lessons learned, benefiting the entire collaborative
ecosystem. The potential outcomes extend beyond immedi-
ate projects, influencing the broader domain by establishing
a culture of rigorous verification and safety enhancement.

REFERENCES

[1] J.-C. Tournier, B. F. Adiego, and I. Lopez-Miguel, “PLCverif:
Status of a Formal Verification Tool for Programmable Logic
Controller”, in Proc. ICALEPCS’21, Shanghai, China, 2022,
paper MOPV042, pp. 248-252.
doi:10.18429/]JACoW-ICALEPCS2021-MOPV042

E.B. Vifiuela, D. Darvas, and V. Molndr, “PLCverif Re-
engineered: An Open Platform for the Formal Analysis of
PLC Programs”, in Proc. ICALEPCS’19, New York, NY,
USA, 2020, pp. 21-27.
doi:10.18429/]ACoW-ICALEPCS2019-MOBPPO1

I.D. Lopez-Miguel, B.F. Adiego, J.-C. Tournier,
E.B. Vifiuela, and J.A. Rodriguez-Aguilar, “Simpli-
fication of Numeric Variables for PLC Model Checking”, in
2021 19th ACM-IEEE Int. Conf. Formal Methods Models
Syst. Design (MEMOCODE), 2021, pp. 10-20.
doi:10.1145/3487212.3487334

D. Giannakopoulou, T. Pressburger, A. Mavridou, J. Rhein,
J. Schumann, and N. Shi, “Formal requirements elicitation
with FRET”, in REFSQ Tools, 2020. https://ntrs.nasa.
gov/citations/20200001989

Z. Adém et al., “From Natural Language Requirements To the
Verification Of Programmable Logic Controllers: Integrating
FRET Into PLCverif”, in Proc. NASA Formal Methods: 15th
Int. Symp., Houston, TX, USA, 2023, pp. 353-360.
doi:10.1007/978-3-631-33170-1_21

(2]

(3]

(4]

(3]

TUPDPOOL1
4n

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7

(6]

(71

(8]

(9]

(10]

[11]

ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

@ 472

ISSN: 2226-0358

D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The
software model checker Blast”, International Journal on Soft-
ware Tools for Technology Transfer, vol. 9, no. 5-6, pp. 505—
525,2007. doi:10.1007/s10009-007-0044-z

B. Fernandez Adiego et al., “Applying model checking
to industrial-sized PLC programs”, IEEE Trans. Ind. Inf.,
vol. 11, pp. 1400-1410, 2015.
doi:10.1109/TII.2015.2489184

B.F. Adiego et al., “Applying Model Checking to Crit-
ical PLC Applications: An ITER Case Study”, in Proc.
ICALEPCS’17, Barcelona, Spain, 2017, pp. 1792-1796.
doi:10.18429/]JACoW-ICALEPCS2017-THPHA161

B.F. Adiego, E. B. Vinuela, F. Havart, T. Ladzinski, I. Lopez-
Miguel, and J.-C. Tournier, “Applying Model Checking to
Highly-Configurable Safety Critical Software: The SPS-PPS
PLC Program”, in Proc. ICALEPCS’21, Shanghai, China,
2022, paper WEPV042, pp. 759-763.
doi:10.18429/JACoW-ICALEPCS2021-WEPV042

Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems — Part 3: Software requirements,
https://webstore.iec.ch/publication/5517

B.F. Adiego et al., “Cause-and-Effect Matrix Specifica-
tions for Safety Critical Systems at CERN”, in Proc.
ICALEPCS’19, New York, NY, USA, 2020, pp. 285-290.

TUPDPOOI
()

ICALEP(S2023, Cape Town, South Africa

(12]

[13]

(14]

[15]

(16]

(17]

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-TUPDPOO1

doi:10.18429/JACoW-ICALEPCS2019-MOPHAO41

Automated Verification of Programmable Logic Con-
troller Programs against Structured Natural Language
Requirements, https://ntrs.nasa.gov/citations/
20230003752

D. Darvas, E. B. Vinuela, and 1. Majzik, “A Formal Spec-
ification Method for PLC-based Applications”, in Proc.
ICALEPCS’15, Melbourne, Australia, 2015, pp. 907-910.
doi:10.18429/]ACoW-ICALEPCS2015-WEPGF091

Functional safety - Safety instrumented systems for the pro-
cess industry sector - Part 2: Guidelines for the applica-
tion of IEC 61511-1:2016, https://webstore.iec.ch/
publication/25521

D. Gaimann er al., “The personnel access system for fair”,
in Proc. IPAC’23, Venice, Italy, 2023, pp. 4067-4069.
doi:10.18429/]ACoW-IPAC2023-THPAG49

Totally Integrated Automation Portal, https://www.
siemens.com/global/en/products/automation/
industry-software/automation-software/tia-
portal.html

STEP 7 and WinCC Engineering V18 - System man-
ual, https://support.industry.siemens.com/dl/
files/056/109815056/att_1121875/v5/STEP_7_
WinCC_V18_enUS_en-US.pdf

General

Management/Collaboration/Human Aspects

