©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUMBCMO38

TOWARDS THE ZERO CODE WASTE
TO INCREASE THE IMPACT OF SCIENCE

P. P. Goryl*, L. Zytniak, S2Innovation Sp. z o0.0., Krakéw, Poland
A. Gotz, ESRF, Grenoble, France
V. Hardion, MAX-IV, Lund, Sweden
S. Hauf, European XFEL GmbH, Schenefeld, Germany
K. S. White, ORNL, Oak Ridge, USA

Abstract

Accelerators and other big science facilities rely heavily
on internally developed technologies, including control sys-
tem software. Much of it can and is shared between labs,
like the Tango Controls and EPICS. Then, some of it finds
broad application outside science, like the famous World
Wide Web. However, there are still a lot of duplicating ef-
forts in the labs, and a lot of software has the potential to be
applied in other areas. Increasing collaboration and involv-
ing private companies can help avoid redundant work. It can
decrease the overall costs of laboratory development and
operation. Having private industry involved in technology
development also increases the chances of new applications.
This can positively impact society, which means effective
spending of public funds. The talk will be based on the
results of a survey looking at how much scientific institutes
and companies focus on collaboration and dissemination
in the field of software technologies. It will also include
remarks based on the authors’ experiences in building an in-
novative ecosystem.

INTRODUCTION

An efficient economy is key for today’s world challenges
related to climate and limited resources. Zero Waste can be
applied to all production cycles related to material resources
and non-tangible assets like software.

The primary business of large scientific infrastructures,
like particle accelerators or telescopes, is to conduct research
in areas other than software technology. However, software
is a core tool for them. No commercial software is often
available due to specific functional and operational require-
ments and a limited market. This means the laboratories
must develop or buy software development services to satisfy
their needs. As the scientific labs compete on the scientific
results, not the functionalities of the software tools, there is
space for collaboration. So, these institutions already share
an effort to provide software tools, minimising the costs of
implementing functionalities. When they do this, sharing
source code, they follow the Zero-Waste idea and build an
efficient economy. The above concerns are the source of the
Zero Code-Waste term.

*

piotr.goryl @s2innovation.com

TUMBCMO038
456

Zero Code-Waste

The Zero Code-Waste is not about keeping maintenance
and running of the legacy or obsolete software.

The Zero Code-Waste is an idea of maximizing software
reuse between projects. This shall decrease duplicated ef-
fort in providing the same functionalities within different
software packages. In this context, it is directly related to
collaboration. Ultimately, it should lower development and
maintenance costs, increasing the so-called development
capacity of the community, which means developing more
functionalities with less human effort and other resources
spent.

The Zero Code-Waste can also encompass methodologies
and techniques to minimize source code (re-)writing within
a project. However, it is not covered by this paper.

Industry Involvement

Whereas current business models in the commercial soft-
ware industry are often connected to closed-source IP rights,
the scientific community, funded mainly with public money,
relies heavily on open-source tools and collaborative models.
It does not mean the software industry is not involved in the
scientific project. Besides using standard commercial soft-
ware, like operating systems or office applications, scientific
institutes and collaborations often outsource or subcontract
software development for their scientific needs. While the
institutes do not regard this as increasing the chances of the
software being reused, there are some reasons to claim it
may help navigate towards Zero Code-Waste.

Disclaimer

This paper covers only a few Zero Code-Waste and col-
laboration aspects. Some claims come from the author’s ex-
perience but are not supported with references or discussed
in-depth due to publication volume. The paper is more to
get focus and start a discussion on the topic, which certainly
needs more research.

THE SURVEY

The survey [1] aimed to get wide feedback from soft-
ware group leaders and managers about collaboration and
its impact on the workload. The survey was sent to many
organizations (70) all over the world. The 19 of them have
answered.

General

Management/Collaboration/Human Aspects

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

10. In how many collaborative software projects do you actively participate?

None 4

[

[I 3

® 205 10 '
more than 5 2

o

11. How much effort does your team spend on the development (technical work) of

software shared with other institutes

@ Less than 5% of the team's capp... 7
@ Between 5and 20% 9
@ Between 20 and 50% 1

More than 50% 2

Figure 1: In how many collaborative software projects do
you actively participate? How much effort does your team
spend on the development (technical work) of software
shared with other institutes.

For some questions, the Net Promoter Score (NPS) was
applied. NPS is based on a single survey question asking
respondents to rate they agree with it.

16. My team has enough capacity to support other institutes that use our software.

IEDY

NPS®

Promoters 1
Passives 3

Detractors 15

Figure 2: My team has enough capacity to support other
institutes that use our software.

19. Outsourcing open-source software development to private companies will help to
share the code between institutes.

Promoters 1
Passives 4

Detractors 14 -100

Figure 3: Outsourcing the development of shared open-
source projects to private companies can speed up software
development within the community.

The Results

The first conclusion of the survey is that most scientific
organizations are involved in 2 to 5 collaborative software
projects. On the other hand, software teams spent less than
20% time on the development of collaborative software,
see Fig. 1. Most of the software group leaders confirmed
that they don’t have enough capacity to support other insti-
tutes that use community software, see Fig. 2. As an effect,

General

Management/Collaboration/Human Aspects

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUMBCMO38

software teams don’t have enough support from other col-
laborating organizations as also shown by the survey results.
This is a big challenge for new joiners because they mostly
have problems getting support from other organizations to
start using collaborative software.

An interesting outcome is that software group leaders
don’t believe that outsourcing open-source software devel-
opment to private companies will help to share the source
code between organizations, as shown in Fig. 3.

COLLABORATIONS ON SOFTWARE

Open-sourcing software is essential to making software
available for others to contribute to but it is not always a
guarantee to attract collaborators. In this section, we identify
different models of collaboration that work. We can identify
the following classes of software projects and their potential
for creating collaborations:

1. software components - are small software projects
which have a dedicated purpose e.g. a plotting widget
or a device driver etc. The dedicated nature of soft-
ware components makes them relatively easy to share
and reuse especially if they have a small number of
dependencies. In contrast to their potential to attract a
large number of users, they often do not attract many
contributors. This is due to them being small and often
easy to use which means no strong need for additional
resources. Contributions can be attracted if the soft-
ware component is part of a larger ecosystem which
has a large number of users e.g. a popular framework.

2. software libraries - are medium to large-sized software
projects which implement a common set of functions
e.g. aplotting library or a file I/O library. Libraries have
a better chance of attracting contributions, but these
still stay modest in general. This can be related to their
focused scope which leaves less room for innovation.

3. software frameworks - are large software projects

which implement a set of concepts which allow a wide .

range of applications to be implemented. Software
frameworks have the most potential to attract contribu-
tions and collaborators.

4. software applications - these are small to large soft-
ware projects which are standalone and can be deployed
without additional software required. Software appli-
cations can attract contributions if they have been de-
signed to accept them, but this is not often the case.
Software developers often attempt to redevelop new
applications, which basically do the same. This re-
sults in few developers per application, which leads to
duplication.

The role of software developers and managers should be to
avoid duplication unless it is really necessary for technical
or strategic reasons.

Examples

To put the paper into context it is worth mentioning a few
examples of successful collaborations around the software.

TUMB(CMO038
457

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

TANGO The Tango Controls Collaboration [2] is a
large collaboration of sites using the Tango Controls frame-
work for controlling all or part of their installations. The
first version of Tango was developed in 1999 at the ESRF.
Very soon after the first release of Tango SOLEIL joined
ESREF to participate and to adapt it to control the SOLEIL
synchrotron. The two teams worked closely together holding
monthly meetings to design and develop Tango further. In
2002 a workshop on Corba Controls was held at the ESRF [3]
which gathered experts in Corba and controls to present dif-
ferent implementations of CORBA and control frameworks
based on Corba. Following this meeting two new site, ELET-
> TRA, ALBA and later DESY, decided to adopt Tango and
join the collaboration. From this point on the collaboration
continued to grow at a steady pace with the software being
adopted by many sites. For the first years the development
of the common libraries was done by a few facilities, led by
the ESRF. In 2015 ten facilities using Tango decided to con-
tribute financially to a collaboration contract which would
allow them to sub-contract some critical maintenance devel-
opments to ensure that the common core is well maintained
and continues to be developed. The collaboration contract
was for 5 years and has been so successful that it has been
extended for another 5 years. The software companies fi-
nanced by the collaboration contract have been essential
to keeping Tango maintained and new features being devel-
oped. At the same time as the contract was extended some of
the core members increased the number of core developers
working on Tango. This boost in developers is visible in the
activity around Tango over the last 2 years [2]. The Tango
collaboration is in a very healthy state thanks to the origi-
nal members still being active and new major sites like the
LOFAR and SKA projects adopting Tango. Even if Tango
could attract more users if more promotion was done with
better documentation and regular updates to the website, the
best advertisement for Tango remains having good software
which is well packaged. This has been achieved thanks to
the collaborative efforts of the members of the collaboration.

EPICS The Experimental Physics and Industrial Con-
trol System (EPICS) toolkit was created from a collaboration
started between Los Alamos (LANL) and Argonne (ANL)
National Laboratories in the US Department of Energy [4].
The collaboration began by reusing code from the LANL
Ground Test Accelerator Control System which was devel-
oped as a toolkit for building a control system where the
communication, execution engine and user interface tools
were provided as shared software which users configured
to meet their control system requirements. ANL pursued
this collaboration with LANL in order to efficiently build
the control system for the Advanced Photon Source project.
Other laboratories learned of this unproven collaboration
through conference presentations and several joined the col-
laboration before ANL had completed building their ma-
chine using EPICS. Over 30 years later, EPICS is now used
in the vast majority of DOE accelerator construction and
upgrade projects and many projects outside the US, saving

TUMBCMO038
458

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUMBCMO38

untold dollars and hours of work. Contributions to the code
come from a small fraction of the users and the collabora-
tion is loosely managed by volunteers within the community.
Private companies now exist with staff who are trained in
EPICS allowing laboratories to contribute to development or
augment staff for projects without needing to hire and train
employees, lending greater resource flexibility and capacity
to the ecosystem.

MAX-IV - SOLARIS Collabroation Both MAX IV
and Solaris adopted a multibend achromat (MBA) lattice
design for their storage rings. In addition to sharing a sim-
ilar design, many technical implementations are common
to both facilities i.e. power supplies, vacuum equipment,
plc, software language and IT infrastructure, etc. Both facil-
ities use the Tango Controls system as their primary control
system software. Given that Tango is open-source, it facil-
itates collaboration, allowing facilities to share solutions,
best practices, and even specific implementations or mod-
ules of the system. Due to their collaborative history, MAX
IV and Solaris have worked together on software compo-
nents, especially those that relate to common systems or
hardware. The mutual benefit of the collaboration was very
strong, especially since very little overhead was introduced
for developing the abstraction layer. While the two facilities
have similarities due to their collaborative efforts, it’s essen-
tial to note that they have distinct characteristics and goals.
For instance, they both have different beamlines where the
software might differ due to the instrumentation, techniques,
and specific use cases. This lead to the development of
different software, but it allows to explore different paths
and share the lessons learned. The essential is to keep the
synergy with regular communication.

Karabo A recurring situation at light sources is that the
accelerator control system is distinct from instrument con-
trols, and possibly even uses a different control framework.
For instance, at the European XFEL the super conducting
linac is operated using the DESY Object Oriented Control
System (DOOCS) [5], while photon beam lines and instru-
ments use Karabo [6,7]. In such cases, opportunities exist
to reduce code waste through an efficient means of bridg-
ing data and interfaces between two control systems. Such
bridging technology can frequently reduce the need to im-
plement features or integrate hardware multiple times. At
EuXFEL, optimal tuning of the accelerator, e.g., requires
access to diagnostic data from photon beam imaging devices
read out in Karabo. Conversely, scientists and facility users
depend on machine performance parameters, available in
DOOCS, to interpret experiment results. This latter case is
so common that an interface to create ad-hoc DOOCS to
Karabo bridges is provided to operators.

The routine and successful collaboration between DESY
and EuXFEL on bridging DOOCS and Karabo is considered
a template for a generic Tango to Karabo bridge currently
being developed at EuXFEL on top of PyTango [8] and the
Karabo Middlelayer API [9]. The project’s initial aim is to

General

Management/Collaboration/Human Aspects

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

reuse all but the interfaces of existing Tango integrations for
a high-speed goniometer, the RoadRunner [10], and possibly,
optical laser systems at the EuXFEL's HED instrument [11].
Due to the generic approach that was chosen, future applica-
tion scenarios are the integration of hardware sourced from
other facilities and industrial partners familiar with Tango
controls. The development of tools that bridge between dif-
ferent control frameworks is facilitated if involved software
is open source, i.e. sources, not just interfaces, are accessible
to developers, and if developers of the involved systems are
open to collaborating and acknowledge specifics of each
system. The observation that accessible code is an important
documentation method, and thus can foster collaboration, is
one of the considerations that led to the release of Karabo
as free and open-source software after more than 10 years
of development.

CHALLENGES
IP Rights and Licensing

When starting a collaboration, or making an existing, pos-
sibly mission-critical project available as open-source soft-
ware, the licenses of project dependencies and intellectual
property (IP) rights need to be considered. For instance,
the Karabo control system is considered mission-critical for
the operation of the European XFEL. Because Karabo was
developed in-house, the facility is the single IP rights holder.
When the project was released into the public domain, care
was taken that contributor license agreements ensure that
contributions’ intellectual property remains with EuXFEL
to an extend that allows the facility to e.g. relicense the soft-
ware. Additionally, with MPL2.0 [12] a license that includes
a so-called anti-patent-trolling clause was chosen. Releasing
a large existing project with many third-party dependencies
can generally lead to non-trivial license inter-dependencies.
For Karabo, the core framework is currently limited to li-
censes which are neither in conflict with the various GPL
flavors, nor the Apache 2.0 license, while Tango uses LGPL
and GPL licenses. EPICS has a bespoke license, accom-
modating specific requirements by the U.S. Department of
Energy. Determining an appropriate license for an existing
large project that is to be made publicly available as part of
a collaboration, can thus be a non-trivial challenge, which
might require expert legal advice.

Duplications

However, the community see the benefits of re-using the
software there are a couple of examples of duplication:

* Tango Controls GUI tools: Taurus, QTango, ATK,

¢ Web interfaces: Waltz, Taranta, Puma/Cumbia,

e Alarm tools: PyAlarm, AlarmHandler, Achtung,

¢ GraphQL for Tango CS: ESRF and MAX-IV solutions,

* Control systems: Tango Controls, EPICS, Karabo,

Doocs

There are reasons why duplication happens. Often spe-
cific software is crucial for the laboratory, and it decides to
have a solution which can be fully maintained internally i.e.

General

Management/Collaboration/Human Aspects

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUMBCMO38

matching skills of the internal team. Another reason is the
schedule. Usually, new needs are connected with building
a new facility or upgrading an existing one, which triggers
new software development. It may be adding new features
to existing tools or writing a new tool from scratch. The
first approach can be time-consuming for projects with a
large community and complicated in terms of management.
Then, technological progress starts with the prototyping of
new solutions. It is good if there are prototypes built on
different technology stacks. This allows to find the best so-
lution. However, the prototypes quickly became production
solutions. If it happens, it is hard for a facility to resign from
what it developed in favour of a tool provided by another
team. Also, the information flow is an essential factor. If
one institute does not know that another is addressing the
same need, they duplicate the effort. Today, we have very
effective means of information exchange, but the challenge
still exists due to the volume of software used at institutes
and its paramount role. The duplication can easily happen
to person-month” projects, like equipment drivers, as there
are hundreds of kinds of equipment commonly used by lab-
oratories. However, the same happens to larger tools, too.

ADDRESSING THE CHALLENGES
Enabling Collaborations

Communication Prior to the start of large software
collaborations like Tango and EPICS, accelerator control
systems were developed as completely custom efforts inter-
nal to a single project or laboratory despite sharing a lot
of common requirements. This could be attributed to little
sharing of information between laboratories about their con-
trols systems. In 1985, a small group of accelerator controls
professionals met in Los Alamos to discuss sharing control
system strategies. From this meeting and a second meeting
in Villars came the idea and creation of a biennial series of
conferences, eventually called the International Conference

on Accelerator and Large Experimental Physics Control Sys- -

tems (ICALEPCS). Over 30 years later, this conference now
attracts hundreds of participants from around the world giv-
ing accelerator controls engineers an opportunity to learn
what other laboratories are doing and a forum for discussion
and collaboration. In fact, the majority of the talks at the
conference refeence so use of shared software. Another fac-
tor fueling the push towards collaborative control systems
was the reality of cost and schedule. Prior to 1990, it was
not uncommon for a machine to be ready for commissioning
while the control system needed more time. Collaborative
solutions have also served to reduce the cost of providing a
system. Proposals for controls systems for new machines are
substantially lower (sometime as low as 5% of total project
cost) due to widespread reuse of communication layers, ex-
ecution engines, common tools for operations and on-line
models and data analysis tools. The downside of collabora-
tive software is the lack of funding for support. New projects
get money to built a machine but when collaborative soft-
ware is used, there is often no clear path to how maintenance

TUMBCMO038
459

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

will be funded. Collaborative software requires people to
work more closely with more people to succeed. When us-
ing open source software developed by other facilities try to
join them in developing the software.

Good Practices

Avoid Duplicating Software! A common pattern
amongst software developers is to first develop a new soft-
ware withut looking at what already exists out there. The
more developers a facility has the more common this is and
the larger the software package or framework which can
be developed. The large the software being developed the
more difficult it is too share. A first step when deciding to
develop a new software package is to look around to see
what is out there and seriously try to join an existing devel-
opment rather than starting a new development. When using
software developed by others try to contribute to it instead
of extending it on a private fork or working around it by
developing new features outside. Vice versa this requires
the original developers being open to contributions.

If It’s Not Needed (Anymore), Remove It! As projects
grow over time, certain functionality becomes outdated.
Code paths that implement this functionality may first be dep-
recated, and then become non-reachable at all, e.g. by hard-
coding a flag that was previously configurable, or adding a
preprocessor directive that avoids compilation of sections
of code. At this point the latest the deprecated code should
be deleted, rather than leaving developers new to the project
to figure out what actually is in use or relevant. Version
control systems make sure the code is not wasted, as it can
be recovered from the version should it ever be needed again.

Write Self-Documenting Code Code can be a good
documentation of itself and help developers reuse it in dif-
ferent settings. Good self-descriptive code avoids constructs
that obfuscate intention: extremely condensed short-hands
can be ingenious, but also incomprehensible by others. An
appropriate level of comments should be added where as-
pects of the design might not be straight-forward. One
should keep in mind though, that comments, as any doc-
umentation, are more likely to become outdated than the
code itself. Obviously, especially the public interface of the
code should be sufficiently documented, importantly includ-
ing input and output data types, assumptions on the data, as
well as exceptions that might occur. Finally, unit tests, and
integration tests, can be useful for documenting intended
use cases, and best practices of using the code they test.

Avoiding Unnecessary Assumptions Code can be
reused more easily if it doesn’t make unnecessary assump-
tions on the usage scenario. A library for a motor driver,
e.g., ideally does make assumptions on the control system it
is to be used in and limits itself to data types native to the
programming language it is implemented in or composite
types thereof. Similarly, a scan engine is more reusable if it

TUMBCMO038
460

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUMBCMO38

implements an abstraction layer for interactions with hard-
ware or the control system. In the case of Bluesky, Ophyd
for instance has this role [13].

Cultivate Code Review Processes A good code review
culture is an efficient means to address the aforementioned
points as part of normal workflows, especially if new con-
tributors join from time to time. Reviewers should be en-
couraged to ask also seemingly trivial questions, point out
and ask for clarification on contributions that are not straight-
forward for them to understand, and insist on an appropriate
level of testing and documentation to be provided before a
contribution is accepted.

Companies Involvement

Whereas the survey results show that institutes are scepti-
cal about the positive role of involvement of the companies
there are some examples, where those provide significant
input into the community software i.e. Tango Controls Col-
laboration subcontracted development and maintenance of
the framework and ecosystem to a couple of private compa-
nies. Moreover, these companies are treated as and indeed
are part of the community. The both-sided collaborative
approach is an important factor. If it is implemented the in-
volvement of the private software industry allows to address
resource and support-related challenges. The companies can
also address information flow within the community, as they
are in regular contact with their (potential) customers.

CONCLUSION

Open source software and collaboration thereon is also a
form of acknowledgement for the developers contributing
to a project [14]. This can be especially important in a sci-
entific setting, where the accepted form of recognition is
publication, and engineers and scientists with a focus on soft-
ware development, and technical support, frequently publish
less by virtue of their (choice of) role in the organization.
Platforms like GitHub.com and Gitlab.com facilitate such
recognition through individual contribution statistics, and
frequent contributors earn reputation over time. Such statis-
tics nowadays are e.g. known to potentially being looked at
as part of a recruitment process [15] and thus can impact
careers.

ACKNOWLEDGEMENTS

The authors want to thank all who answered the survey [1]
as well as all who participated in the discussions. I want
also to thank Reynald Bourtembourg, for the footnote he
places with his posts on the Tango Controls forum, which is
a trigger for this paper.

REFERENCES

[1] Results of the Towards Zero Code-Waste survey,
doi:10.5281/zenodo.8411372

General

Management/Collaboration/Human Aspects

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7

[2]

(3]

[4]

[5]

(6]

[7]

[8]
[9]

ISSN: 2226-0358

T. Jurges et al., “The Tango Controls Collaboration Status
in 2023”, presented at ICALEPCS’23, Cape Town, South
Africa, paper TH1IBCOO3, this conference.

Corba Controls workshop, https://www.esrf.fr/
conferences/Corba_Controls/

Leo R. Dalesio et al., “The experimental physics and indus-
trial control system architecture: past, present, and future”,
Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 352, no. 1-2,
1994. doi:10.1016/0168-9002(94)91493-1

DESY Object Oriented Control System (DOOCS), https:
//doocs.desy.de

D. Goeries et al., “The Karabo SCADA System at the Eu-
ropean XFEL,2023”, Synchrotron Radiat. News, to be pub-
lished.

S. Hauf et al., “The Karabo distributed control system”, J.
Synchrotron Radiat., vol. 26, no. 5, pp. 1448-1461, 2019.
doi:10.1107/S1600577519006696

PyTango, 2023, https://pytango.readthedocs.io

How To Middlelayer,
readthedocs.io/en/latest/

General

Management/Collaboration/Human Aspects

https://howtomiddlelayer.

ICALEP(S2023, Cape Town, South Africa

[10]

(11]

[12]

[13]
[14]

[15]

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUMBCMO38

P. Roedig et al., “High-speed fixed-target serial virus crystal-
lography”, Nat. Methods, vol. 14, no. 8, pp. 805-810. 2017.
doi:10.1038/nmeth.4335

U. Zastrau et al., “The high energy density scientific instru-
ment at the European XFEL”, J. Synchrotron Radiat., vol. 28,
no. 5, pp. 1393-1416, 2021.
doi:10.1107/S1600577521007335

Mozilla Public License Version
//www.mozilla.org/en-US/MPL/2.0/

2.0, https:

Bluesky, https://blueskyproject.io

Y. Ye and K. Kishida, “Toward an understanding of the moti-
vation of open source software developers”, in Proc. 25th Int.
Conf. Software Eng., Portland, OR, USA, 2003.
doi:10.1109/ICSE.2003.1201220

Standing Out in a Competitive Market: The Impact of an Im-
pressive GitHub Profile, https://code.likeagirl.
io/standing-out-in-a-competitive-market-
the-impact-of-an-impressive-github-profile-
771cf2e084d4

TUMB(CMO038
461

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

of
©

