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Abstract

Ultra-intense laser-plasma interactions can produce TV/m
acceleration gradients, making them promising for compact
accelerators. Peking University is constructing a proton ra-
diotherapy system prototype based on PW laser accelerators
(CLAPA-II). This transient acceleration process becomes
more challenging for stability control, which is critical for
medical applications. This work demonstrates artificial in-
telligence’s application in laser accelerator control systems.

Laser accelerator requires fast implementation of micro-
precision alignment between the ultra-intense laser and the
target. We proposed an automated positioning program us-
ing the YOLO algorithm. This real-time method employs
the convolutional neural network, directly predicting object
locations and class probabilities from input images. It en-
ables precise, automatic solid target alignment in about a
hundred milliseconds, reducing experimental preparation
time. The YOLO algorithm is also integrated into the safety
interlocking system for anti-tailing, allowing quick emer-
gency response.

The intelligent control system also enables convenient, ac-
curate beam tuning. We developed high-performance virtual
accelerator software using OpenXAL and GPU-accelerated
multi-particle beam transport simulations. The software al-
lows real-time or custom parameter simulations and features
control interfaces compatible with optimization algorithms.
By designing tailored objective functions, the desired beam
size and distribution can be achieved in a few iterations.

INTRODUCTION

Ultra-intense laser interaction with solid targets can pro-
duce acceleration gradients up to TV/m [1], which is consid-
ered a promising candidate for future compact accelerators.
Pulsed proton sources from laser-plasma accelerators (LPA)
offer significant application advantages in high-dose-rate tu-
mor radiotherapy [2,3], extreme environmental material irra-
diation [4,5], and proton radiography [6,7] due to their short
time pulse and high peak current intensity. Among various
acceleration mechanisms, Target Normal Sheath Accelera-
tion (TNSA) has been extensively studied both theoretically
and experimentally [8—10]. This mechanism stands out for
simplicity, robustness, and smooth beam profile compared
to other mechanisms. Theoretical and experimental studies
have shown that the cut-off energy of protons accelerated
under the TNSA mechanism is sensitive to the laser intensity
I [11,12]following an E, 4 ~ 19 scaling low [13]. Laser
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acceleration experiments have already demonstrated high-
quality particle beams with energies approaching nearly 100
MeV [14].

To optimize laser energy deposition on the surface of
the targets, the main laser with a center wavelength of A4
is focused on a spot with the size of several micrometers,
denoted as rg , using an off-axis parabolic mirror (OAP). This
configuration results in a Rayleigh length at the micrometer
scale, as indicated by Lg = ﬂr(z) /4. Consequently, precise
alignment at the micrometer level between the laser spot and
the target surface becomes imperative and optical methods
capable of measuring distances are employed.

Traditional automatic alignment depends on multi-step
algorithms [15, 16] that are time-consuming. The defocus
distance is measured from the imaging system by designing
a focus measure function. The focus measure function value
will reach its extremum when the lens motor is approaching
the optimal imaging position. Nowadays, artificial intelli-
gence techniques for computer vision have been successfully
used for rapidly processing imaging information [17, 18].
This new method ensures highly efficient target positioning.
In the first session, we explored a deep learning method to
realize rapid automated positioning. We successfully demon-
strated that the YOLO [19,20] (You Only Look Once) object
detection network enables fast and high-precision automatic
positioning. Subsequently, we integrated this deep learning
model into the laser accelerator control system. Addition-
ally, YOLO algorithm has also been implanted into the safety
interlocking system of CLAPA-II. It can display informa-
tion on the operator interface and issue a sound alarm to
help operators quickly take necessary actions in emergency
situations.

In the second session, we delineated the developmental
process of virtual accelerator software within laser acceler-
ators, encompassing the development of GPU-accelerated
multi-particle beam transport simulation algorithm, the de-
velopment of software interfaces, and the incorporation of ap-
plications utilizing genetic optimization algorithms. The vir-
tual accelerator software has accomplished the bi-directional
conversion between physical quantities and control quanti-
ties within the control system. This advancement facilitates
the more convenient and efficient application of physical
and artificial intelligence algorithms to accelerators, laying
a foundational framework for the realization of intelligent
control in future laser accelerators.
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SESSION 1: REAL-TIME OBJECT
DETECTION IN LPA

Methods

The experimental setup and positioning system of LPA
are illustrated in Fig. 1. The key optical components of the
positioning system include a high-magnification microscope
lens and CCD camera with a specific depth of field, high-
precision motors for controlling the six degrees of freedom
in the orientation of OAP and the target holder, and a halo-
gen lamp for controlling the illumination conditions. The
four images in the bottom right corner of Fig. 1 display the
target surface under high magnification. Typically, the CCD
camera with the microscope lens is oriented at an angle rel-
ative to the target holder. Consequently, only a portion of
the target surface can be imaged clearly. By identifying the
clear area, the target position can be determined: a clear
position on the right indicates that the target is located in
front of the focal plane, a clear position on the left indicates
that the target is positioned behind the focal plane, and a
clear position in the center indicates that the target has been
accurately aligned.

Once a clear area is identified within the field of view, the
motors can be adjusted by scanning the distance until the
clear position aligns with the center of the image. To achieve
automated and fast target positioning, a feedback signal of
the target is required to control the movement of the motors.
In this study, we utilized a deep learning algorithm to detect
the clear area and calculate the defocus distance.

) Focus driven laser

N

N Position b (defocused)
\‘\ Position a (in-focus)
Focal plane
LED
50x

CCD

a.(in-focus)

b.(defocued)

Figure 1: Laser-plasma Acceleration Experiment Setup Lay-
out. The top row displays the imaging of the aluminum
surface, while the bottom displays the imaging of the plas-
tic surface. Within the field of view, the clear area can be
observed in the middle (column a) at target position a (in-
focus). Similarly, the clear area can be observed on the left
(column b) at target position b (defocused).

A Faster-Automated Positioning Algorithms: YOLO

We proposed a faster-automated positioning algorithm
using the YOLO deep learning model (as shown in Fig. 2).
YOLO is a highly efficient convolutional neural network that
directly performs object localization and classification on
images.
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The YOLO algorithm works by dividing the input image
into a grid of cells and predicting bounding boxes and class
probabilities for each cell. Each bounding box prediction
consists of four coordinates (X, y, width, height) that define
the location and size of the object. Additionally, there are
class probabilities that indicate the likelihood of each ob-
ject class being present within the bounding box. Another
crucial aspect of YOLO’s performance is the management
of bounding box overlap. When the overlap between two
bounding boxes exceeds this threshold, non-maximum sup-
pression (NMS) is applied to retain only the most confident
prediction. This prevents multiple overlapping boxes from
being considered as distinct objects.

The compact size and faster inference speed of YOLO
make it well-suited for real-time object detection. Once the
relative positions of the clear and non-clear areas are identi-
fied, the Y-axis motor movement distance can be estimated
through linear calculation.
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Figure 2: Object Detections on the Target Surface [19].

Experiments Details and Results

Data Collection and Annotations We acquire a se-
ries of target surface images at varying defocus distances
automatically by controlling the motor’s movement using
the LabVIEW program. Initially, each target is manually
positioned and the optimal spatial positions are stored in
advance. Subsequently, we develop an auto-control program
that scans the target both forward and backward with a 10um
step size by controlling the y-axis of the motor. The camera
captures and stores target images at defocus distances with
each step size. Finally, we annotate the clear and non-clear
positions on each image, saving the annotations as JSON
files. These annotations are represented by rectangular box
coordinates and object categories. About 230 plastic target
images are annotated and randomly shuffled into training
and validation sets in an 8:2 ratio.

Training the Network Training the model with the im-
age data sets on a Tesla P100 GPU takes approximately 40
minutes. The model gradually converged within 400 epochs.

We also conducted a series of experiments to investigate
how different training set sizes affect the training time and
model convergence(Fig. 3).In experiment 1 and experiment
2, We randomly selected 50 and 100 images from the origi-
nal training set as new training sets respectively. In exper-
iment 4, we created a larger training set comprising 1,000
images annotated with location information. This training
set includes 200 manually labeled images and 800 images
labeled automatically by a neural network after a manual
augmenting process. The augmentation of labels involves
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adding slight numerical noise to the coordinates and width
of the bounding boxes, removing object annotations with
low confidence, and occasionally duplicating annotations
for images with the same defocus distances. Image augmen-
tation techniques include random flipping and adjustments
in brightness.

Liner Transformation of Lables To complete testing
target positioning, it is necessary to convert the position
labels of the detected objects into the movement distance
on the y-axis motor through a linear transformation. The
transformation method is divided into two ways. If a clear
object is detected, we search for the annotation with the high-
est confidence value and obtain the corresponding label’s
horizontal coordinate x, to calculate the motor movement
distance using the equation L = k(0.5 — x). If only a
non-clear position is detected, we search for the non-clear
position annotation with the maximum confidence value
and obtain the corresponding label’s width w, and horizon-
tal coordinate x. The motor movement distance should be
L = kow - sign(0.5 — x). Here,the linear transformation
coeflicients k; and k, are determined by the angle of the
image plane and the target movement direction.

Test Results We present several metrics including MAE
(Mean Absolute Error) and R2 score. MAE measures the
average difference between the predicted and actual defocus
distance. R2 score, also known as the coefficient of determi-
nation, assesses the goodness of fit of the regression line to
the data points. The formulas for each metric are as follows:

N
MAE =1/N )" (15 = yil) (M

i=1

N N
R =1- Z (Vi = yz‘)z/z Fi - yi)® )
i=1 i=1

Here, |y¥; — y;|represents the error between the predicted
values and the ground truth values. y; represents the mean
value of the ground truth. The influence of the training set
size on the model’s accuracy is illustrated in Fig. 3. It is
observed enlarging the training dataset size augments the
YOLO model’s capacity for generalization. Upon reaching
a training sample size of 1000 for plastic targets, the model
exhibits similar performance levels when applied to both
metal and plastic target test sets.

Inference

We selected the YOLO algorithm model trained in exper-
iment 4 as the final deployment model due to its balanced
performance in terms of inference speed and accuracy. For
a single prediction from a 1600 x 1200 pixels image, it takes
20 ms on a desktop GTX-1080Ti GPU and 150 ms on a desk-
top CPU(2.60 GHz). Statistical analysis of the plastic target
calibration result is illustrated in Figs. 4 and 5. Statistical
tests indicate that the calibration errors follow a normal dis-
tribution. It can be considered that the average positioning
error is less than 1/10 of the Rayleigh length range of the
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Figure 3: Mean Absolute Error (MAE) on test sets predicted
by the YOLO model trained with different training set sizes.
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Figure 4: A linear regression analysis of the inference re-
sults by the YOLO model (exp.4) is depicted. The red area
represents the 80-micron Raleigh length (corresponding to
a 5-micron-focused spot). The green and gray dots respec-
tively represent the testing results of plastic and aluminum
images.

experiment and 95% of the targets’ calibration errors(the
range of u + 20 ) are within a 20-micrometer error.

The interaction protocol between the YOLO model and
the LabVIEW program is illustrated in Fig. 6. This archi-
tecture is implemented based on the FLASK framework,
where the LabVIEW program controlling the target can is-
sue calibration instructions. The server performs detection
on the target images and outputs the motor movement dis-
tance via a linear transformation script. This methodology
also alleviates the computational load on the local control
computer.

Other Application

During the laser-plasma interaction process, other in-
stantaneous radiation, including neutrons and gamma rays,
can cause radiation injuries to the human body. Therefore,
CLAPA-II requires a stable and reliable safety interlock sys-
tem to shut down the laser source when humans enter the
running experimental area. To address this, we have de-
veloped an anti-tailing subsystem for the safety interlock
system. This subsystem utilizes the YOLO object detection
algorithm to monitor the camera view and is deployed on
edge mobile devices. When a human presence is detected,
alarm signals are sent to the IOC (Input/Output Controller)
of the EPICS (Experimental Physics and Industrial Control
System) control system. This ensures immediate action is
taken to prevent any potential harm.
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partial results shown) along with corresponding normal dis-
tribution fit (below).

Flask
Client Server
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Label to Step

Figure 6: Architecture of the inference model and target
control program. We deploy the model on the server, while
the montor control program on the client (local computer).
When a request command is sent to the server, the model
predicts the calibration distance for the target, and the motor
adjusts its position to achieve target positioning

Table 1: Comparison of Simulation Runtime Between the
GPU Algorithm and TraceWin on the CLAPA-II Horizontal
Beamline

I HPSim |

: C++ CUDA |
GPU computes particle

| | processes program logic tl‘a[l)lspﬂl‘f :

Figure 7: This figure shows the software architecture of the
GPU-accelerated multi-particle beam transport simulation
algorithm. Java programs call the algorithm through the
“JNA” interface, and Python programs call the algorithm
through the “ctypes” module.

Figure 8: Main graphical user interface of virtual Accelerator
software

Simulated GPU TraceWin

Proton Accelerated with Ratio
Count Algorithm (s) Multi-threads (s)

103 0.106 2.194 20.7
104 0.116 2.677 23.1
10° 0.2 4302 21.5
100 0.95 23.614 24.9
107 7.684 199.468 25.9

SESSION 2: VIRTUAL ACCELERATOR
SOFTWARE FOR BEAMLINE

The ongoing advancement in laser-plasma accelerators
has instigated the development of multiple functional beam
lines designed to transport pulsed particle beams charac-
terized by considerable energy spread and divergence an-
gle [21,22]. These advancements necessitate the develop-
ment of optimal design strategies and online feedback mech-
anisms for laser beam lines, prompting the inception of Vir-
tual Accelerator (VA) technology [23]. Virtual Accelerators
are crucial for real-time beam transport simulations, beam
tuning, and communication with control systems, providing
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Figure 9: Virtual accelerator software simulation results
visualization.

pivotal functionalities for the adjustment and operation of
accelerators [24-29].

GPU Algorithm Development

We introduced a GPU-accelerated multi-particle beam
transport simulation algorithm, derived from the open-
source project “HPSim” [30, 31], aiming to bridge the
accuracy-speed gap. This algorithm, utilizing Transfer
Matrix-based methods, is 20 times more efficient than its con-
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Figure 10: The optimal results in the 1st, 100th, 1000th, and 5000th generations of the genetic optimization algorithm. The
solid line indicates the beam envelope change and the red dashed line indicates the beam transport efficiency.

temporaries like TraceWin [32], reducing simulation times
to a few hundred milliseconds (as shown in Table 1). It is
versatile, offering cross-programming and cross-language
calls, and is adept at simulating solenoids and exponentially
decreasing energy spectrum beams [33]. This algorithm
is crucial for handling beams from laser-plasma accelera-
tors due to their inherent misalignment and unique beam
characteristics.

Figure 7 illustrates our ‘C’ interface, designed for the
GPU-accelerated multi-particle beam transport simulation
algorithm. Given the prevalent use of the Windows OS in
the control room and among numerous researchers, we have
compiled the simulation algorithm into a Dynamic Link
Library (dll) on the Windows 10 platform. This approach
ensures its accessibility to Java and Python programs, ac-
commodating the diverse needs of users.

Development of Virtual Accelerator Software

The development of the Virtual Accelerator Software is
pivotal for enhancing beamline diagnostics in laser accelera-
tors. This software primarily serves to conduct simulations
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based on real-time or custom parameters of the accelera-
tor, providing a virtual diagnostic framework. It efficiently
computes variations in beam parameters along the beamline,
furnishing essential references for beam tuning.

Integration and Development Framework Our inte-
gration of the GPU-accelerated multi-particle beam trans-
port simulation algorithm into the OpenXAL framework [34]
has resulted in the successful development of advanced vir-
tual accelerator software. OpenXAL serves as an open-
source environment designed for crafting applications,
scripts, and services related to accelerator physics. Rooted
in Java programming language, it supports the creation of
feature-rich user interfaces and enables the implementation
of intricate control algorithms.

User Interface and Control The software’s main graph-
ical user interface, as depicted in Fig. 8, permits users to
switch between set values and real-time values from the
EPICS control system [35] for simulations. It displays the
magnetic field parameters’ design values for each magnet
and the real-time values retrieved from the EPICS control

System Modelling

Artificial Intelligence & Machine Learning



19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

system. When conducting real-time simulations, the user
can choose either design parameters or “Test Value” under
the “Design” option or the real-time parameters under the
“All Live” option.

Simulation Visualization The visualization of the
beam simulation results is illustrated in Fig. 9. This fea-
ture encompasses a history section, beam parameters, and a
section showing the transverse phase space distribution of
the particles, reflecting the beam distribution and focusing
in horizontal and vertical directions. This visualization also
allows users to set the selected record to the EPICS control
system during the experiment and filter out particles in a
specific energy range using a slider.

Algorithm Implementation and Extension The Vir-
tual Accelerator Software’s structure allows for the incor-
poration of more complex control algorithms. These may
involve the use of optimization algorithms to automate the
adjustment of magnet parameters and achieve desired beam
spot distribution, or a blend of real and simulated data to
identify anomalies in beam diagnostic devices.

Beamline Magnets Optimization

The beamline magnet optimization process relied heavily
on the enhanced speed of the GPU-accelerated algorithm, uti-
lizing optimization techniques like the genetic algorithm [36]
to identify ideal parameters. The efficiency of the algorithm
enabled the completion of 1,000,000 beam transport simu-
lations in approximately 2587.15 seconds, averaging 2.59
ms per simulation. The optimization process effectively
augmented beam transport efficiency to 79.6%, minimizing
beam loss rate and facilitating ideal beam spot distribution
(as shown in Fig. 10). This optimization process is critical
in designing proton collection systems that can handle high
divergence beams resulting from laser acceleration.

CONCLUSION

In conclusion, this work has demonstrated the application
of artificial intelligence in laser accelerator control systems.
The utilization of the YOLO algorithm has enabled fast and
automated positioning and the safety interlocking system,
which have significantly reduced experimental preparation
time and improved stability control. The developed virtual
accelerator software has also facilitated accurate beam tun-
ing by optimization algorithms. The desired beam size and
distribution can be achieved in a few iterations
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