
DYNAMIC CONTROL ROOM INTERFACES FOR
COMPLEX PARTICLE ACCELERATOR SYSTEMS

B. E. Bolling∗ , D. Nordt, G. Fedel, M. Munoz, European Spallation Source ERIC, Lund, Sweden

Abstract
The European Spallation Source (ESS) is a research facil-

ity under construction aiming to be the world’s most power-
ful pulsed neutron source. It is powered by a complex parti-
cle accelerator designed to provide a 2.86 ms long proton
pulse at 2 GeV with a repetition rate of 14 Hz. Commis-
sioning of the first part of the accelerator has begun and the
requirements on the control system interfaces varies greatly
as progress is made and new systems are added. In this paper,
three such applications are discussed in separate sections.

A Navigator interface was developed for the control room
interfaces aimed towards giving operators and users a clear
and structured way towards quickly finding the needed inter-
face(s) they need. The construction of this interface is made
automatically via a Python-based application and is built on
applications in any directory structure both with and without
developer interference (fully and semi-automatic methods).

The second interface discussed in this paper is the Op-
erations Accelerator Synoptic interface, which uses a set
of input lattices and system interface templates to construct
configurable synoptic view of the systems in various sections
and a controller panel for any selected system.

Lastly for this paper there is a configurable Radio Fre-
quency Orchestration interface for Operations, which allows
in-situ modification of the interface depending on which
systems and components are selected.

INTRODUCTION
Complex machinery always poses multiple challenges

when it comes to designing comprehensible graphical user
interfaces (GUIs) such that the operators can work efficiently.
Large-scale particle accelerators, with many unique sub-
systems are an extreme example of this. In this paper, the
term Operator Interface (OPI) is used to describe any GUI
that is used within the Phoebus framework [1] as it is in-
tended to be used by an ESS Operator.

To address a few challenges of having to operate such
complex machinery, two Python scripts were developed to
dynamically build OPIs based on user inputs (accelerator
lattice files). These OPIs are referred to as being dynamic as
they are generated (updated) when needed. A third OPI is
also described which is dynamic for the user during runtime.

OPERATOR INTERFACES
At ESS the OPIs are structured in three different levels

aimed for control room operators (”Operator level”), system
expert functions (”System Expert level”) and for lowest-level
functions (”Engineering level”). With this methodology im-
plemented already during commissioning and conditioning
∗ benjamin.bolling@ess.eu

phases, it became possible to find which settings the differ-
ent levels of OPIs should be exposed to. Further on, each
have a subset of directories for each part of the machine
(e.g. Accelerator and Target), followed by another subset of
directories for each system of that part of the machine (e.g.
for the Ion Source section or Radio Frequency systems).

Within each machine-part directory lies the OPIs, which
are designed in accordance with the internal OPI visual de-
sign rules document. The visual design document describes
what colour codes are supposed to be used for what type of
state and object, which type of object(s) to use for which
type of setting/information, etc., in order to establish a site-
wide continuity, with the outcome being a higher situational
awareness for the control room operator and hence increas-
ing the reliability of the facility [2].

NAVIGATOR OPI
The openness of Phoebus introduces the issue that having

a large number of user interfaces scattered across a large
amount of directories, with many cases having support files
that cannot be opened as standalone applications, the user
interfaces needed become difficult/time-consuming to be
found. The OPIs Navigator OPI is a prototype interface
aimed at solving the issue by dynamically constructing an
OPI to enable users to navigate amongst relevant user inter-
faces - saving users a lot of time and effort. A user flowchart
is shown in Fig. 1.

Figure 1: Navigator OPI user flowchart.

Methodology
A Python script is used to render the Navigator OPI which

loops through a given set of directories using a recursive
strategy for any subdirectory and with a set of filters applied,
such as methods for identifying support files such that they
can be omitted. The script then launches a PyQt5-based
user interface with a table of OPIs identified such that the
developer may select which OPIs are to be included in the

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO07

Software

User Interfaces & User Experience

TUMBCMO07

351

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Navigator OPI, which may be referred to as accepted OPIs.
A flowchart of the construction method can be seen in Fig. 2.

Figure 2: Navigator OPI construction method flowchart.

Each accepted OPI gets its own button and tree-structure
leading to it showing all parent nodes (i.e. directories), and
converts a file with the name overview or main setting the
OPI to be its parent’s button (see Fig. 3 showing Radio Fre-
quency (RF) cavities’ Overview OPI as the parent directory’s
name is RF).

Figure 3: Navigator OPI showing the RF Overview OPI.

The Navigator OPI has been refined and readjusted mul-
tiple times during multiple ESS Normal Conducting Linac
commissioning phases. The first version consisted of a sin-
gle file with many objects listening to multiple other virtual
signals, set up as so-called ”rules” regarding the position
of each button and their respective horizontal and vertical
lines. This initial attempt was found to increase the internal
memory usage exponentially as a function of the number
of accepted OPIs with parents, making it unsustainable as
the number of OPIs increased and is expected to increase
further as the facility matures.

A better approach turned out to be to have a larger set of
support files - one per OPI and with a single local signal
listening to which OPI is the actively selected one. This
method instead used a larger proportion of the hard disc
(16MB for more than 300 OPIs), which with a linear increase
of the space used as a function of the number of OPIs now
considered as sustainable as the internal memory usage is
reasonably fixed.

Results
The end result is a Python script dynamically constructing

the Navigator OPI which enables fast and efficient navigation
between accepted OPIs. There are further discussions ongo-
ing on how to implement the Navigator OPI as a Phoebus
element directly - hence it being referred to as a prototype -
since it is now clearer what is needed from an Operations
perspective with regards to an OPI Navigator.

ACCELERATOR SYNOPTIC OPI
The Accelerator Synoptic OPI, derived from the Greek

word ”synoptikos” which means general view of the whole,
is designed to provide a general overview of the state of a
linear accelerator as a whole combined with ways to quickly
interact with each accelerator component. As with the Nav-
igator OPI, it is constructed by activating a Python script
with a set of embedded display templates, blockicons (push-
buttons combined with visual elements), filter setups, and
one or more accelerator lattice files. A user flowchart of
the application itself is shown in Fig. 4. The script sorts all
components in terms of position along the accelerator, and
builds the synoptic application with interactive elements and
their associated embedded displays.

Figure 4: Synoptic OPI user flowchart.

Methodology
The initial version was created with similar methods as

the initial version of the Navigator OPI, i.e. consisting of a

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO07

TUMBCMO07

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

352

Software

User Interfaces & User Experience



single file with many objects listening to multiple other vir-
tual signals - resulting in that an unnecessarily large portion
of the internal memory is used. Hence, the method behind
how the application is built was refined such that the script
instead creates one embedded display per accepted element
and filter combination. An accepted element shall have a
valid blockicon associated with it as well as a name of the
physical equipment in the lattice file (as a lattice file can con-
tain several ”empty” elements, such as drift space, for e.g.
accelerator physics applications). For each synoptic combi-
nation (show or hide component species, such as vacuum
components), separate files are constructed and displayed as
embedded screens per section (or combined section).

By using templates and different identifiers, the developer
can easily modify and add or remove different components to
information displays and the embedded displays (including
controllers, readbacks, history plots, etc.). A simplified
flowchart regarding how the Python script constructs the
Synoptic OPI has been generated and is shown in Fig. 5.

Figure 5: Synoptic OPI construction method flowchart.

Results

The end result is an Accelerator Synoptic OPI which is
easy to use and enables users to quickly navigate through
the different components as well as have an understanding
of the overall state of the machine in accordance with the
user flowchart in Fig. 4. Sectional overviews further adds to
the completeness of the application, as can be seen in Fig. 6.

Furthermore, a filter function can be set up to show or
hide different accelerator component species (see Fig. 7),
interacting with/showing live data from any component (pre-
suming that it had a template file enabling this) as well as
information regarding it (with e.g. lattice data and a picture
of it, see Fig. 8).

Figure 6: Synoptic OPI showing the Medium Energy Beta
Transport sectional overview.

Figure 7: Synoptic OPI showing the accelerator component
filter function and Drift Tube Linac section 3 RF controllers.

Figure 8: Synoptic OPI showing the Drift Tube Linac section
3 RF controllers and component information.

RF ORCHESTRATION OPI
The configurable RF Orchestration interface for Oper-

ations allows in-situ modification of the setup depending
on which systems and components are to be controlled for
different purposes. Using local signals, users can select
which accelerator components (such as Medium Energy
Beam Transport (MEBT) Buncher 1) to show and which
subsystems (Modulator, Low-Level RF, etc.) to show de-
tailed information about and controllers and for which to
show only the essential information.

Methodology
The OPI consists of submodules with different inputs

for their naming and can hence be reused for other similar
systems. When combined, they span e.g. the RFQ and
the DTL RF systems (2-klystrons-per-modulator system),
meaning that a relatively small amount of work is needed to
create the OPIs for different system species - such as solid
state amplifier bunchers having no modulators or 4-klystrons-
per-modulator systems.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO07

Software

User Interfaces & User Experience

TUMBCMO07

353

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Results
A fully expanded view is shown in Fig. 9 and an almost

fully collapsed view is shown in in Fig. 10 (in which only
the Modulator module is expanded).

Figure 9: RF Orchestration OPI in a fully expanded view.

Figure 10: RF Orchestration OPI in an almost fully collapsed
view.

As can be seen, the collapsed view offers the user a quick
overview of the system states via colour codes based on the
state relative to its expected state during normal operation:

• Red: System state is not OK (e.g. off or in fault).

• Yellow: System state might need attention, as it is not
in the state it should be for normal operation.

• Green: System state is OK for normal operation.

This enables the user to quickly gain an understanding of the
state of the systems as well as means to quickly interact with
systems or launch OPIs with more advanced (less interacted
with) settings.

CONCLUSION
A set of OPIs were created to give Operators a quick

overview and simpler means to control a very complex ma-
chine that currently is in installation phase, meaning that the
OPIs have to be quickly adaptable and dynamic to facilitate
operational flexibility. For this purpose, the complex OPIs
used for Navigating between other OPIs (Navigator OPI)
and between different accelerator components (Accelera-
tor Synoptic OPI) are successfully generated using Python
scripts when a change is made to the accelerator lattice, a
request to include more system species is made, or newly
developed and deployed OPIs that Operators added are to
be included. Therefore, the script-generated OPIs Navigator
OPI and Accelerator Synoptic OPI are fully scalable to the
full accelerator whilst the RF Orchestration OPI needs slight
changes to some embedded system components in order
to support e.g. 4-klystron-per-modulator systems and the
Spokes RF systems.

Whilst the Python scripts for the Navigator OPI and Ac-
celerator Synoptic OPI initially developed to be mainly used
by a linear particle accelerator, the script is constructed such
that it can be modified and extended to many other types of
facilities.

ACKNOWLEDGEMENTS
The authors acknowledge the great support and collabora-

tion across multiple divisions at ESS, including the Opera-
tions Division and the Integrated Control System Division,
and to all colleagues reviewing and providing feedback both
on the OPIs and on this paper itself.

REFERENCES
[1] K. Shroff et al., “New JAVA Frameworks for Builing Next Gen-

eration EPICS Applications”, in Proc. ICALEPCS’19, New
York, NY, USA, 2019, paper WESH1002, pp. 1497-1500.
doi:10.18429/JACoW-ICALEPCS2019-WESH1002

[2] D. Nordt, “ESS Rules for the Visual Design of EPICS Opera-
tor Interfaces”, European Spallation Source, Lund, Sweden,
Rep. ESS-4752055, 2023.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO07

TUMBCMO07

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

354

Software

User Interfaces & User Experience


