ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

o

©)

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THSDSCOS

THE SKAO ENGINEERING DATA ARCHIVE: FROM BASIC DESIGN TO
PROTOTYPE DEPLOYMENTS IN KUBERNETES

Thomas Juerges, SKA Observatory, Jodrell Bank, United Kingdom
Aditya Dange, Tata Consultancy Services, Pune, India

Abstract

During its construction and production life cycles, the
Square Kilometre Array Observatory (SKAO) will generate
non-scientific, i.e. engineering, data. The sources of the

> engineering data are either hardware devices or software pro-

grams that generate this data. Thanks to the Tango Controls
software framework, the engineering data can be automati-
cally stored in a relational database, which SKAO refers to
as the Engineering Data Archive (EDA). Making the data
in the EDA accessible and available to engineers and users
in the observatory is as important as storing the data itself.
Possible use cases for the data are verification of systems
under test, performance evaluation of systems under test, pre-
dictive maintenance and general performance monitoring
over time. Therefore we tried to build on the knowledge that
other research facilities in the Tango Controls collaboration
already gained, when they designed, implemented, deployed
and ran their engineering data archives. SKAO implemented
a prototype for its EDA, that leverages several open-source
software packages:

» with Tango Controls’ HDB++

* the Timescaledb time series database

* and Kubernetes at its core.
In this overview we will answer the immediate question ”But
why do we not just do, what others are doing?” and explain
the reasoning behind our choices in the design and in the
implementation.

INTRODUCTION

The Square Kilometre Array Observatory (SKAO) [1]
with its headquarters in Jodrell Bank, UK, is currently con-
structing two large-scale radio telescope arrays, SKA-Mid
(under construction)! [2,3] in South Africa and SKA-Low
(under construction)? [2,4] in Western Australia.

During construction, commissioning, and operation engi-
neers, operators, and scientists will need to inspect a range of
non-scientific data with a range starting as simple as temper-
ature and humidity to highly specific ones like a SKA-Mid

! SKA-Mid will be a radio telescope array consisting of 192 fully steerable
dishes: 13315 m SKA dishes and the already operating 6413.5 m Meerkat
dishes. The receivers are sensitive at frequencies between 350 MHz
and 15.4 GHz. The geographical distribution of the dishes allows for
maximum baselines of 150 km.

2 SKA-Low will be an aperture array radio telescope that consists of 512
stations each with 256 log-periodic dipoles. The dipoles are sensitive at
frequencies between 50 MHz and 350 MHz. The configuration of the
stations and their geographical distribution allow for baselines between
0.7 km and 70 km at a nominal frequency of 140 MHz.

THSDSCO5
1590

receptor’s delay coefficient. All this data is required to be
handled in a uniform manner. This is where the EDA [5]
software comes into the picture.

To emphasize, even during the ongoing construction
phase, the already existing software that is continuously
tested and integrated in Kubernetes [6] clusters and the pro-
totype hardware generate engineering data. This data has
at this moment value for debugging the software, its perfor-
mance, and finding mismatches between how the hardware
behaves and the described behaviour in its interface control
documents. When a simple line of log cannot tell the whole
story, engineering data is able to complete the picture. Engi-
neering data has the power to provide, even independent of
any logs, a realistic representation of the current state of a
system.

Naturally had SKAOQO’s initial EDA design aged somewhat
in the fast moving software technology age and was ready
for a fresh look. Therefore SKAO invited partner facilities in
the Tango Controls collaboration to explain and demonstrate
their EDAs in order to modify the existing design for the
SKAO EDA with the help of the already existing knowledge
about newer technologies.

The demonstrations were very enlightening and it became
almost immediately clear that the existing design for SKA’s
EDA would really benefit from a fresh look, replacing tech-
nologies that had been shown to not work for the use case
at hand as had been proven at the partner facilities and also
make use of technologies that SKAO had adopted in the
meanwhile.

EARLY IDEAS, THE DESIGN AND THE
ARCHITECTURE

The SKAO’s EDA design was based on the Tango Con-
trols [7] HDB++ archiver [8], consisting of the HDB++
Configuration Manager [9] and the HDB++ Event Sub-
scriber [10], an EDA Controller and Cassandra [11] as the
EDA database back end (as shown in Fig. 1).

This design focused on addressing the functional require-
ments and did not consider the deployment aspect. One
reason was the expected shift in software deployment from
bare metal deployments to cloud-based ones.

Evolution Over Time

The geographical distribution of the observatory’s com-
puters and clusters already added significant complexity to
deployment of, running and maintaining the software needed
to operate the entire observatory with the two telescopes.
This informed SKAO’s decision to containerize all software
that does not have to run on bare metal and also deploy

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISSN: 2226-0358

ISBN: 978-3-95450-238-7

Figure 1: The initial EDA design in the context of the Tango
Controls devices needed for SKA-Mid and SKA-Low.

the operational software in Kubernetes environments. The
logical conclusion for the EDA team was therefore to also
containerize the EDA software as well and deploy it in Ku-
bernetes environments. This would immediately simplify
software deployment and its maintenance, especially upgrad-
ing of software versions at run time without interrupting the
operation of the observatory.

After consulting with other large-scale experiments (Light
sources: ALBA [12], Elettra [13], MAX IV [14]; Scientific
Telescope: ASTRON’s LOFAR2.0 [15]) it was decided to
replace Cassandra with Timescale [16]. It was also decided
that a non-monitoring data archiver would be out of scope
for the EDA.

In short, the changes that were made to the design are as
follows:

* Non-monitoring data archiver: out of scope, potentially
be replaced later with an online data storage solution
(Parquet files [17]) that makes direct access from the
database possible.

* EDA Controller: This application was replaced with the
Configurator and the new application ArchWizard [18].

* The new data visualisation GUI ArchViewer [19] was
added.

* Cassandra: The Cassandra NoDB was replaced by the
Timescale timeseries database.

* Fully containrise the entire EDA software.

e Deployment of the EDA software with Helm [20]
charts.

Individual Deployments

Figures 2 and 3 show the current deployment of the EDA
for the development pipeline and SKA Dish-specific deploy-
ment respectively. There are a few differences between the
functional blocks. The EDA Controller envisaged to manage
the EDA operations, evolved into two separate components
namely Archwizard and Configurator. The Non-monitoring
data archiver was descoped. The database backend was
also changed to Timescale as mentioned earlier. The main

Software

Software Architecture & Technology Evolution

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-THSDSCOS

/'
HDB++

components

container

- =
y — Timescale
database
—

Figure 3: EDA deployment for Dish.

archiver component, the HDB++, remained the same of
which the latest available version were to be used.

There is considerable work on the deployment aspect
where deployment differs across various computing environ-
ments. The main factors behind the tailored deployments
are: the availability of computing resources in different facil-
ities, the heterogeneous nature of subsystems and physically
distributed sites. The deployment aspect is further discussed
in the next section.

FROM PLAN TO REALITY: DEPLOYMENT
AND THE WORKING SYSTEM

The current trend in software deployment is containeriza-
tion of the applications and software packages in order to
be able to deploy them either in the cloud or on bare metal.
Containerised software makes automated maintenance of
a large-scale software system easier, at the same time en-
hancing the security of the deployed software. This in part
addresses the SKAO policy that software shall be conscious
of the large attack surface that the SKAO network and its
computing resources offer. Containerisation also allows
usage of heterogeneous development platforms the SKA de-
velopers work on/are proficient in because the containers
are self-sufficient enough that they are almost OS and even
CPU architecture independent.

Software that is not available as an image is “container-
ised” by SKAO developers. They create the files and scripts
necessary to build an OCI [21] image of the software from
a stable release in SKAO’s CI/CD pipeline. Pre-configured
jobs in the CI/CD pipeline ensure the software quality is

THSDSC05
1591

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

maintained by executing a set of test cases on the build. Af-
ter review, the resulting image is released as a standardized
product on SKAQ’s artifact repository from where it can be
downloaded for deployment.

The actual deployment of the EDA is done with the
help of Helm charts. In such a Helm chart the container-
ised Archiver applications (HDB++ Configuration Man-
ager, HDB++ Event Subscriber, Configurator, ArchWizard,
ArchViewer) are bundled together. To provide more flexi-
bility in the deployment, it is done in two steps, using two
individual charts: one for the Timescale database server and
one for the Archiver applications. The split of the two serves
also the purpose of protecting the Timescale databases when
the Archiver applications receive an update or a bug fix and
need to be redeployed.

Considering the different resource needs for SKA environ-
ments in different locations, there are multiple deployment
configurations defined to save the time of the engineers to
fine-tune the specific deployment configurations. It is also
possible to enhance the configuration by providing individ-
ual parameters during the deployment of the Helm charts as
can be seen in the example in Fig. 4.

1 # Clone the repository with the Timescale server deployment

2 # Specify a tag in the —branch parameter for reproducibility

3 git clone ~branch=2.8.2 —depth=1 https://gitlab.com/ska-telesacope/
ska-tango-archiver.git

4 cd ska-telesacope/ska-tango-archiver

5 # Deploy Timescale with an already existing and known persistent volume

(default values are assumed)

6 # Note: Timescale deployment can also be configured with parameters on the
command - line

7 make timescaledeploy

8 # Deploy the Archiver applications, assuming default configuration values.

make k8s-install-chart

10 # The deployment step will log a URL at which a user can access the
Configurator.

11 # The documentation is available at

12 # https://developer.skao.int/projects/ska-tango-archiver/en/latest/introduction/
introduction.html

Figure 4: Deployment of Timescale and the Archiver with

just a handful of commands.

It is possible to directly provide values that modify the
default configuration of a deployment as shown in Fig. 5.

With this, the Archiver applications are deployed in the Ku-

bernetes namespace ‘ska-tango-archiver’.

make - k8s—install-chart TELESCOPE=<SKA-low/mid> \
ARCHIVER_DBNAME=<dbname> \
ARCHIVER_TIMESCALE_HOST_NAME=<hostname> \
ARCHIVER_TIMESCALE_PORT=<port> \
ARCHIVER_TIMESCALE_DB_USER=<dbuser> \
ARCHIVER_TIMESCALE_DB_PWD=<dbpassword> \
TELESCOPE_ENVIRONMENT=<environment name> \
ARCHWIZARD_CONFIG=<full FQDN of configuration Manager>

Figure 5: Individual configuration options can be provided
with the installation command.

A deployment can be removed, i.e. uninstalled, with a
simple command:

make k8s-uninstall-chart

As can be seen in the examples above, it is possible to
deploy multiple instances of the Timescale server and the

Archiver applications in the same location by just specifying

different namespaces.
THSDSCO5
1592

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-THSDSCOS

Another graphical user interface is the Configurator,
shown in Fig. 6. The tool allows to modify at run time what
is archived. A YAML [22] file with the new or changed con-
figuration can be uploaded and the changes are immediately
applied. The current configuration can also be downloaded
as a YAML file.

Backup the
configuration

Please upload yaml file for archiver configuration

© ADDIUPDATE
REMOVE

Addimodify/remove

|4 atributes

DN to get current archiver configuration

Nofle chosen

Reset Table | Refresh Table

3 ADD

DD

CHANGE
REMOVE

REMOVE

REMOVE

Configuration
change history

Figure 6: Screenshot of the Configurator in a running EDA
deployment.

Data Extraction

Data extraction from Timescale databases can be accom-
plished in many ways. Due to the specific HDB++ schema
that is used in Tango Controls to store attribute values in an
HDB++ backend, a manual extraction in SQL would be in-
convenient. Therefore is ArchViewer, a GUI for web-based
data visualization purposes, provided with every deployment
(Fig. 7).

Database server, |
database and Tango | I
facility selection |

| | I I
Attribute |
selection | {

T wmoamE]| o | | | o

Data plot | | |
L | , d J

1200 1300 1600 15100

Selected
attributes

| 0250922 15:11:54: Loade dat o 1 attrbutes i x5

Figure 7: ArchViewer: The web-based data visualisation
GUI for HDB++ Timescale databases.

>>> import pyhdbpp

>>> rd = pyhdbpp. reader(

apiclass = 'pyhdbpp.timescaledb.timescaledb.TimescaleDbReader',

config = 'admin:admin@1@.200.10.109:5432/mid_archiver_db"'

)

rd.get_attribute_values('<attribute_name>', 'start_time', 'end_time')

>>> values = rd.get_attribute_values('tango://databaseds-tango-base.
ci-ska-skampi-hm-213-mid.svc.cluster.local:10000/ska_mid/tm_subarray_node/1/
obsstate', '2022-8-24', '2023-07-10')

>>> len(values)
79

>>> values[0]

(datetime.datetime(2023, 5, 9, 7, 24, 49, 9386, tzinfo=datetime.timezone.utc),
2, None, @, None)

Figure 8: Example data extraction from a Timescale HDB++
backend with PyHDBPP.

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

For programmatic data extraction and data evaluation, the
pyhdbpp Python module is recommended to the users [23].
The data access with pyhdbpp is user-friendly and straight
forward as can be seen in Fig. 8.

CONCLUSION AND OUTLOOK

It has been very valuable to listen to the other facilities
in the Tango Controls collaboration and to learn how they
deploy and run their archives for engineering data and un-
derstand the designs they chose, what technologies they
used and what their deployment and data maintenance strate-
gies are. This informed SKAQO’s decisions to move away
from Cassandra as a database back end for the EDA and to
Timescale. Unlike the majority of facilities in the Tango
Controls collaboration, SKAO runs a major part of its moni-
tor and control software in Kubernetes clusters. The decision
to also deploy the EDA in Kubernetes environments instead
of bare metal integrates the EDA seamlessly into SKAO’s
software landscape. The EDA becomes easier to maintain
because it is not a one off software that needs special atten-
tion.

First deployments have shown that the documentation has
already reached a mature and satisfactory level, but still
needs improvements where it is not explicit enough and
thus has the potential to confuse users. These deployments
will very likely expose performance bottlenecks, that the
flexible design will be able to address at the database, Event
Subscriber and Configuration Manager levels.

Timescale’s native on-the-fly data compression is already
being worked on as well as database server and data health
supervision. Data migration into long-term storage capa-
bility is planned for, but it remains to be seen first, what
data rates will be reached and how quickly the available data
storage will be exhausted.

REFERENCES

[1] The Square Kilometre Array Observatory, https://skao.
int

[2] SKA Telescope Specifications, https://www.skao.
int/en/science-users/118/ska-telescope-
specifications##__otpm4

[3] SKA-Mid, https://www.skao.int/en/explore/
telescopes/ska-mid

Software

Software Architecture & Technology Evolution

ICALEP(S2023, Cape Town, South Africa

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]
[12]
[13]
(14]
[15]

[16]
(17]
(18]

[19]

[20]

[21]

[22]

(23]

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THSDSCOS

SKA-Low, https://www.skao.int/en/explore/
telescopes/ska-low

Documentation SKAO Engineering Data Archive,
https://developer.skao.int/projects/ska-
tango-archiver/en/latest/

Kubernetes, https://kubernetes.io

The Tango Controls collaboration, https://www.tango-
controls.org/about-us

L. Pivetta, R. Bourtembourg, J.L. Pons, C. Scafuri, G. Scalam-
era, G. Strangolino, et al., “HDB++: A New Archiving Sys-
tem for TANGQ?”, in Proc. ICALEPCS’15, Melbourne, Aus-
tralia, Oct. 2015, paper WED3004, pp. 652-655.
doi:10.18429/]ACoW-ICALEPCS2015-WED3004

HDB++ Configuration Manager, https://gitlab.com/
tango-controls/hdbpp/hdbpp-cm

HDB++ Event Subscriber, https://gitlab.com/tango-
controls/hdbpp/hdbpp-es

Apache Cassandra, https://cassandra.apache.org/
ALBA Synchrotron, https://www.cells.es/en/
Elettra Sincrotrone Trieste, https://www.elettra.eu
MAX 1V Laboratory, https://www.maxiv.lu.se

T. Juerges, J.J.D. Mol, and T. Snijder, “LOFAR2.0: Station
Control Upgrade”, in Proc. ICALEPCS’21, Shanghai, China,
Oct. 2021, pp. 31-36.
doi:10.18429/]ACoW-ICALEPCS2021-MOARO3

Timescale, https://www.timescale.com
Apache Parquet, https://parquet.apache.org

ArchWizard: A webapp for viewing HDB++ archived Tango
attribute data in a Timescale database, https://gitlab.
com/tango-controls/hdbpp/archwizard

ArchViewer: A simple web interface to the HDB++
archiving system, https://gitlab.com/tango-
controls/hdbpp/archviewer

Helm, the package manager for Kubernetes, https://helm.
sh

Open Container Initiative, https://opencontainers.
org/

YAML: Yet Another Markup Language, https://yaml.
org

PyHDBPP: The Python HdbReader, https://gitlab.
com/tango-controls/hdbpp/libhdbpp-python

THSDSCO5
1593

©22 (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

of
©

