©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THSDSCO3

INTEGRATE EPICS 7 WITH MATLAB USING PVACCESS
FOR PYTHON (P4P) MODULE

K. Kim*, E. Williams, J. Bellister, K. Kim, M. Zelazny
SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Abstract

MATLAB is essential for accelerator scientists en-gaged
in data analysis and processing across diverse fields, in-
cluding particle physics experiments, syn-chrotron light
sources, X-ray Free Electron Lasers (XFELs), and tele-
scopes, due to its extensive range of built-in functions and
tools. Scientists also depend on Experimental Physics and
Industrial Control Systems (EPICS) 7 to control and mon-
itor complex systems. SLAC has developed Matpva, a Py-
thon interface to integrate EPICS 7 with MATLAB.
Matpva utilizes the PVAccess for Python (P4P) module and
EPICS 7 to offer a robust and reliable interface for
MATLAB users that employ EPICS 7. The EPICS 7 PVAc-
cess API al-lows higher-level scientific applications to
get/set/monitor simple and complex structures from an EP-
ICS 7-based control system. Moreover, Matpva simplifies
the process by handling the data type con-version from Py-
thon to MATLAB, making it easier for researchers to focus
on their analyses and innovative ideas instead of technical
data conversion. By leverag-ing Matpva, researchers can
work more efficiently and make discoveries in diverse
fields, including particle physics and astronomy.

INTRODUCTION

MATLAB stands as an indispensable tool for accelerator
scientists deeply immersed in the intricate realms of data
analysis and processing, spanning an array of scientific do-
mains such as particle physics experiments, synchrotron
light sources, X-ray Free Electron Lasers (XFELSs), and tel-
escopic observations. Its indispensability is rooted in the
vast array of built-in functions and tools it offers, empow-
ering scientists to decipher complex data and derive mean-
ingful insights.

In parallel, the world of scientific instrumentation and
control systems relies heavily on Experimental Physics and
Industrial Control Systems (EPICS) 7, a set of software
tools and libraries widely used for building control systems
in scientific research and industrial facilities [1]. Several
attempts have been made to integrate EPICS into
MATLAB, including projects like labCA and MATLAB
Channel Access (MATLAB CA, MCA) [2, 3]. However,
these were specifically designed for the EPICS Channel
Access (CA) interface within MATLAB [4]. Consequently,
they did not provide comprehensive support for EPICS
PVAccess, which offers distinct advantages over CA [5].
These benefits include structured data types, enhanced se-
curity measures, efficient data transmission, and the ability
to handle structured datasets, such as NTTable [6-8].

* ktkim@slac.stanford.edu

THSDSCO3
1580

Efforts have been made to integrate PVAccess into
MATLAB at SLAC using epicsCoreJava based on Java.
However, this integration faced limitations because
MATLAB still relies on Java 1.8.x, while the EPICS Java
PVAccess support defaults to Java 11, making it incompat-
ible with MATLAB. Moreover, Oracle JDK 8 with the
premier support reached its end of life in March 2022.
OpenJDK 8 is also slated to end support in November
2026.

Thus, SLAC has decided to integrate EPICS PVAccess
with MATLAB using a well-supported language that aligns
with their requirements, Python.

Python has emerged within the scientific community due
to its numerous advantages, including readability, simplic-
ity, versatility, a robust standard library, a vast community,
compatibility, and seamless integration. As a result, numer-
ous institutions and facilities have been transitioning to Py-
thon to leverage these benefits.

Acknowledging this shift, SLAC took a pioneering step
by developing Matpva, a Python interface to integrate EP-
ICS 7 with MATLAB. This work was also inspired by the
labCA, which is the most widely used tool for integrating
EPICS 3 with MATLAB. This innovative solution bridges
the gap between two scientific powerhouses and provides
researchers with a unified platform for their endeavors.
Matpva utilizes Python’s capabilities and integrates the
PVAccess for Python (P4P) module and EPICS 7 [9]. This
creates a sturdy and reliable interface for MATLAB users
navigating the intricate realms of EPICS 7.

What sets Matpva apart, however, is its exceptional ca-
pability to streamline the cumbersome process of convert-
ing data types from Python to MATLAB, and vice versa.
By doing this, Matpva empowers scientists to delve into
their research with unwavering focus and efficiency. It
serves as a catalyst for groundbreaking discoveries in the
multifaceted realms of particle physics and astronomy pro-
pelling the boundaries of scientific knowledge ever further.

IMPLEMENTATION

The PVAccess data type comprises Normative Types,
which are defined as structures consisting of both required
and optional fields. Matpva stands out for its ability to con-
vert PVAccess Normative Types from Python to
MATLAB. In Listing 1, you'll find a code snippet that
demonstrates how PVAccess Normative Types can be con-
verted into MATLAB data types in the mpvaGet function.

Listings 1: Snippet of mpvaGet function as an
implementation example.
% Bring P4P python module into MATLAB
MatP4P = py.p4p.client.thread.Context('pva',
pyargs('nt', false));
PV = MatP4P.get(pvname);

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

% Check the ID of PV

nt_id = string(getID(PV));

% Check the type of PV

t = struct(py.dict(type(PV))).value;

% To have timeStamp information in human readable form
TimeInSeconds = dou-
ble(int64(struct(struct(todict(PV)).timeStamp).sec-
ondsPastEpoch));

ts = datetime(TimeInSeconds, 'ConvertFrom',
'epochtime', 'Epoch', '1970-01-01', ...

'Format', 'MMM dd, yyyy HH:mm:ss.SSS', 'TimeZone',
'uTe');

% To have alarm information

alarm.severity =
int32(int64(struct(struct(todict(PV)).alarm).sever-
ity));

alarm.status =
int32(int64(struct(struct(todict(PV)).alarm).status));
alarm.message =
string(struct(struct(todict(PV)).alarm).message);

% NTScalarArrays data type PVs
if (contains(nt_id, "NTScalarArray"))
if (t == "ai")
ret = int32(py.array.array('i"',
struct(todict(PV)).value));
elseif (t == "aI")
ret = uint32(py.array.array('Il',
struct(todict(PV)).value));
elseif (t == "ab")
ret = int8(py.array.array('b',
struct(todict(PV)).value));

MPVAGET

Calling Sequence
Listing 2: Syntax of mpvaGet function.

% When PV is NTScalar or NTScalarArray type
[PV, ts, alarm] = mpvaGet(pvname)

% When PV is NTTable type

[NTTable, ts, alarm, NTStruct] = mpvaGet(pvname)
% Skip unwanted outputs using tilde(~)

[PV, ~, ~] = mpvaGet(pvname);

Description

The mpvaGet function is used to retrieve the values of
specified EPICS Process Variable (PV) names. When que-
rying PVs are NTScalar or NTScalarArray type, the output
consists of PV value, timestamp, and alarm. For PVs of
NTTable type, the output includes PV value, timestamp,
alarm, and NTStruct as illustrated in Listing 2.

In MATLAB, simply typing mpvaGet(pvname) displays
the first output of the function. If you assign a single out-
put, such as PV = mpvaGet(pvname), it captures the first
value among the outputs. To selectively capture specific
outputs, you can utilize the tilde (~) notation to skip un-
wanted outputs, as demonstrated in Listing 2. For detailed
examples, refer to Listing 3.

Parameters

e PV: The values of specified EPICS PV names. It is one
of the mpvaGet outputs when targeting PV is NTScalar
or NTScalarArray type. When PV is NTScalar, it is a
MATLAB numeric, string, or logical data type. When
PV is NTScalarArray, it is a MATLAB numeric array,
string array, or logical array data type.

Software

Software Architecture & Technology Evolution

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-THSDSCO3

e pvname: A Name of PV. It must be specified as a string
data type. The pvname should be enclosed within dou-
ble quotation marks ("").

e NTTable: The table values of given EPICS PV names.
If the EPICS PV names targeted belongs to the
NTTable type, the data type of acquired values is a
MATLAB Table type.

o ts: Timestamp. It denotes the moment when the EPICS
record was last processed. This timestamp is derived
from the EPICS timestamps, which measure the
elapsed time in seconds and fractional nanoseconds
since 00:00:00 UTC, Jan.1, 1970.

e alarm: This encompasses the alarm status
(HIHI, HIGH, LOW, and LOLO) and severity associ-
ated with the PV.

e NTStruct: The structure values of given EPICS PV
names. When targeted EPICS PV falls under the
NTTable type, mpvpaGet provides another output op-
tion, MATLAB Structure type for user.

MpvaGet Examples

Listing 3: mpvaGet function examples.

% When PV is NTScalar type
>> [PV, ts, alarm] = mpvaGet("TEST:PVA:IntValue")

PV =
int32

10
ts =
datetime
Sep 29, 2023 00:23:46.233

alarm =
struct with fields:

severity: 0
status: 0
message: ""
% When PV is NTScalarArray type and unwanted outputs,
ts and alarm, are skipped
>> [PV, ~, ~] = mpvaGet("TEST:PVA:FloatArray")

PV =
1x6 single row vector

1.5000
6.7000

2.5000 3.5000 4.5000 5.5000

% When PV is NTTable type and unwanted outputs, ts and
alarm, are skipped
>> [NTTable, ~, ~, NTStruct] =

mpvaGet ("TEST:PVA:NTTable")
NTTable =
4x2 table

name number

"test1"
"test2"
"test3"
"test4"

HWN R

NTStruct =

struct with fields:

THSDSC03
1581

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THSDSCO3

name: ["test1" "test2" "test3" "test4"]
number: [1 2 3 4]
MPVAPUT
Calling Sequency

Listing 4: Syntax of mpvaPut function.

% When PV is NTScalar or NTScalarArray type
mpvaPut (pvname, value, "mpvaDebugOn");

% When PV is NTTable type
mpvaPut(pvname, fieldl, valuel, field2, value2, ..,
"mpvaDebugOn");

% When PV is NTTable type, MATLAB table or structure
can be used as an input value

mpvaPut (pvname, struct/table, "mpvaDebugOn");

Description

The mpvaPut function is designed to place input values
into the specified field within the given EPICs PV name.
By default, this operation occurs silently without any dis-
play. However, if you want to view the previous and up-
dated PV values, you can include the optional parameter
mpvaDebugOn as the final input argument in the function,
as demonstrated in Listing 4. Examples of its usage are pro-
vided in Listing 5 for reference.

Parameters

e pvname: A Name of PV. The data type should be a
string.

e value: A value that is a numeric, string, logical, nu-
meric array, string array, or logical array data type. The
character vector is not allowed. Please use a string
("double quotation marks") instead of a character vec-
tor. Boolean values are either true or false. They don't
require quotation marks and every word is lower cases.

o fieldl, field2, field3, Fields of given EPICS
NTTable PV.

e valuel, value2, value3, ...: Values that are numeric ar-
ray, string array, or logical array data types for the spe-
cific field in the given EPICS NTTable PV. The char-
acter vector is not allowed. Please use a string array
("double quotation marks") instead of a character vec-
tor. Bool values are either true or false. They don't re-
quire quotation marks and every word is lower cases.

e You can also use a MATLAB structure or table data
type as input.

MpvaPut Examples

Listing 5: mpvaPut function examples.

% When PV is NTScalar type
>> IntValue = 0;
>> mpvaPut ("TEST:PVA:IntValue", IntValue)

% When PV is NTScalarArray type
>> ab = [false, true, false, false];
>> mpvaPut ("TEST:PVA:BoolArray", ab)

% When PV is NTTable type and mpvaDebugOn is selected
>> Name = ["device_1", "device_2"];

THSDSC03
1582

>> Number = [1.1, 1.2];
>> mpvaPut("TEST:PVA:NTTable",
Number, "mpvaDebugOn")
The old PV is
old_PVv =
4x2 table
name

"name", Name, "number",

number

"test1"
"test2"
"test3"
"test4"

A WN PR

The update PV is
updated_PV =

2x2 table

name number

"device_1" 1.1

"device_2" 1.2

% When MATLAB structure or table is used as a mpvaPut
input for the NTTable data type

>> NTTable = [NTTable; {"String5", 50};{"Test",10}];
>> mpvaPut ("TEST:PVA:NTTable", NTTable)

MPVAMONITOR
Calling Sequency

Listing 6: Syntax of mpvaMonitor function.

mpvaMonitor (pvname) ;

Description

The mpvaMonitor displays the values of specified EP-
ICS PV names as soon as they are updated. This monitor-
ing process persists until the user decides to terminate it.
You can find the syntax of this function in Listing 6, along
with practical examples provided in Listing 7.

Parameters

e pvname: A Name of PV. The data type should be a
string. Type a pvname between double quotation
marks (").

MpvaMonitor Examples

Listing 7: mpvaMonitor function examples.

% When PV is NTScalar type

>> mpvaMonitor ("KTEST:PVA:IntValue")

NEW: KTEST:PVA:IntValue Sat Sep 23 22:22:16 2023 36
NEW: KTEST:PVA:IntValue Sat Sep 23 22:22:17 2023 2
NEW: KTEST:PVA:IntValue Sat Sep 23 22:22:18 2023 22

% When PV is NTTable type
>> mpvaMonitor ("KTEST:PVA:NTTable")
NEW: KTEST:PVA:NTTable Sat Sep 23 22:21:42 2023

name number
device_1 1.66642
device_2 9.3474
NEW: KTEST:PVA:NTTable Sat Sep 23 22:21:43 2023
name number
device_1 7.89731
device_2 9.07301

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

MPVASETMONITOR
Calling Sequency

Listing 8: Syntax of mpvaSetMonitor function.

PV = mpvaSetMonitor (pvname) ;

Description

mpvaSetMonitor subscribes to the given EPICS PV us-
ing Python class and stores values in the cache when it is
updated. The module includes a method (mpvaNewMoni-
torValue) to check if the PV is updated since it has been
subscribed. The function's syntax is outlined in Listing 8.

Parameters

e PV: Instantiated Python class in mpvaSetMonitor.py
module to monitor the pvname.

e pvname: A Name of PV. The data type should be a
string. Type a pvname between double quotation
marks (").

MPVANEWMONITORVALUE
Calling Sequency

Listing 9: Syntax of mpvaNewMonitorValue function.

mpvaNewMonitorValue (PV)

Description

mpvaNewMonitorValue returns false if the PV is not up-
dated and returns true if it is updated. This function is es-
pecially valuable when the read operation consumes a sig-
nificant amount of time, such as when dealing with large
arrays or NTTables. mpvaNewMonitorValue function only
works when mpvaSetMonitor is instantiated. The syntax of
the function is in Listing 9, along with practical examples
of mpvaSetMonitor and mpvaNewMonitorValue provided
in Listing 10.

Parameters
e PV: Instantiated class in mpvaSetMonitor.py Python

module to monitor a specified PV.

MpvaSetMonitor and MpvaNewMonitorValue
Examples

Listing 10: mpvaSetMonitor and mpvaNewMonitorValue
examples.

% Instantiate class in mpvaSetMonitor.py Python module
to monitor a pvname, TEST:PVA:IntValue
>> PV = mpvaSetMonitor ("TEST:PVA:IntValue");

% Check if PV is updated
>> mpvaNewMonitorValue(PV)

ans =
logical
0

% Check the current PV value
>> mpvaGet ("TEST:PVA:Intvalue")

Software

Software Architecture & Technology Evolution

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THSDSCO3

ans =

int32

777

% Put a new PV value

>> mpvaPut ("TEST:PVA:Intvalue", 10)
% Check if PV is updated
>> mpvaNewMonitorValue(PV)
ans =

logical

1
% Confirm the updated PV value
>> mpvaGet ("TEST:PVA:IntValue")
ans =

int32

10

CONCLUSION

In summary, this paper introduces Matpva, a robust tool
that seamlessly connects EPICS 7 and MATLAB using Py-
thon. Previous integration attempts lacked full support for
EPICS PVAccess, which prevents scientists from efficient
large data analysis.

Matpva fills this gap, providing a smooth interface be-
tween EPICS 7 and MATLAB through Python. It simpli-
fies complex data type conversions, allowing scientists to
concentrate on their research without getting entangled in
technical intricacies.

The paper presents key functions like mpvaGet, mpva-
Put, mpvaMonitor, mpvaSetMonitor, and mpvaNewMoni-
torValue. Through illustrative examples, these functions
enable scientists to interact effortlessly with various types
of EPICS PVs, ranging from NTScalar to NTTable.

Furthermore, it's worth noting that Matpva remains a dy-
namic and continuously evolving solution. Its source code
is actively maintained and constantly improved, fostering
a vibrant community of contributors and users. Anyone in-
terested can access the source code freely from the GitHub
repository [10], making it not only a powerful tool but also
a collaborative effort within the scientific community.

In this paper, we've implemented a monitoring flag for
detecting updates of PV after monitoring invocation. To en-
hance this functionality, future work will integrate a
callback mechanism, leveraging MATLAB's built-in sup-
port for callbacks. This enhancement will enable specific
actions when detecting changes in PV values.

REFERENCES

[1] EPICS 7, https://epics-controls.org/resources-
and-support/base/epics-7

[2] 1abCA, https://till-s.github.io/epics-labca/

[3] Matlab CA, https://github.com/epics-exten-
sions/matlab_ca

THSDSC03
1583

©22 (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

of
©

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEP(S2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THSDSCO3
[4] EPICS Channel Access, [8] K.-U. Kasemir, G. S. Guyotte, and M. R. Pearson, “EPICS
https://epics-controls.org/resources-and- V4 Evaluation for SNS Neutron Data”, in Proc.
support/documents/ca ICALEPCS'15, Melbourne, Australia, Oct. 2015, pp. 947-

[5] PVAccess, https://epics-controls.org/re- 949. d01:10.18429/JACOW-ICALEPCS2015-WEPGF105

sources-and-support/documents/pvaccess [9] PVAccess for Python (P4P)

[6] EPICS7,vacu$sandvaam, https://mdavidsaver.github.io/p4p
https://docs.epics-controls.org/en/lat- [10] Matpva,

est/pv-access/OverviewOfpvData.html https://github.com/sTaclab/matpva/tree/master
[7]1 G. White et al., “The epics software framework moves from
controls to physics,” in Proc. IPAC’19, Melbourne, Aus-

tralia, May 2018, pp. 1216-1218.
doi:10.18429/JACoW-IPAC2019-TUZZPLM3

ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

m THSDSC03 Software
o
1584 Software Architecture & Technology Evolution

