19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO78

PORTING OPENMMC TO STM32 MICROCONTROLLERS FOR
FLEXIBLE AMC DEVELOPMENT

M. B. Stubbings*, E. P. Juarez, L. Stant, Diamond Light Source, Didcot, UK
A A. WujekT, CERN, Geneva, Switzerland

Abstract

Diamond Light Source has chosen the MicroTCA plat-
form for high performance data acquisition and controls as
part of the Diamond-II 4th generation light source upgrade.
One requirement is the ability to create custom Advanced
Mezzanine Cards (AMCs) for signal conditioning and inter-
lock support. To facilitate this, a Module Management Con-
troller (MMC) is required to negotiate payload power and
communications between the AMC and MicroI'CA shelf. A
popular open-source firmware for controlling such a device
is OpenMMC, a project from the Brazillian Light Source
(LNLS), which employs a modular approach using FreeR-
TOS on ARM microcontrollers. Initially, openMMC sup-
ported the NXP LPC series of devices. However, to make
use of Diamond’s existing ST Microelectronics (STM32)
infrastructure, we have integrated a CERN fork of the project
supporting STM32 microcontrollers into openMMC. In this
paper, we outline our workflow and experiences introducing
a new ARM device into the project.

INTRODUCTION

MicroT'CA is an open standard for constructing high per-
formance computer systems in a small form factor [1]. It
defines a number of hot-swappable modules, which when
connected to a backplane provide power, cooling, manage-
ment and user functionality. At its core are Advanced Mez-
zanine Cards (AMCs), which are modules that provide the
processing and I/O required to implement an application.
Board management and communication with the rest of
the system is handled by a Module Management Controller
(MMC), which is typically implemented as a low-power
Microcontroller Unit (MCU) on top of the AMC.

Electronic Keying

When an AMC is inserted into a MicroI'CA shelf, the
on-board MMC must pass an Electronic Keying (E-Keying)
stage before it is allowed access to payload power and com-
munications [2]. The main management module, known as
the MicroT'CA Carrier Hub (MCH), leads this process to
determine the electronic capabilities of the inserted mod-
ule and its compatibility with the crate. If the module is
found to be incompatible, then it will be rejected from re-
ceiving power and unable to communicate with the rest of
the system. Through this mechanism, the crate ensures that
it protects itself and all Field Replaceable Units (FRUs) from
mis-operation and power supply overloading.

* michael.stubbings @diamond.ac.uk
" formerly associated with

Hardware

Hardware Technology

Diamond Light Source

At Diamond Light Source [3], we are undergoing signifi-
cant changes to our infrastructure as part of the Diamond-II
4th generation light source upgrade [4]. One aspect of these
changes includes the use of MicroTCA for high performance
data acquisition, processing and control. In the majority of
cases, AMCs will be purchased off-the-shelf from vendors.
However, for a small number of high speed signal processing
applications, we would like to be able to produce our own
AMCs.

A major challenge presents itself when attempting to recre-
ate the behaviour of an MMC. There are a number of com-
plex processes, such as E-keying, that the MMC must per-
form in order for the AMC to operate in a MicroT'CA system.
Additionally, the MMC'’s firmware is dependant on the target
controller being used and the design of the AMC. Therefore,
in each application the firmware would need to be revised
to account for the change in design.

Together, these issues present a significant amount of
work required to support only a small number of use cases.
Through this realisation, we looked for an alternative solu-
tion.

OPENMMC

openMMC [5] is an open source, hardware independent
firmware designed to carry out the operations of an MMC
in a MicroTCA system [6]. Its modular architecture allows
for flexible configuration of the sensors, communications
and controller used for a target board. It employs the FreeR-
TOS [7] operating system for independent task management
and advanced hardware control. Whilst it was initially re-
leased with support for the NXP LPC17xx family of chips,
there is scope to port the project onto other microcontroller
architectures.

STM32 Support

A team at CERN [8] created a fork of the project that
provides support for the STM32 family of microcontrollers.
However, during development they faced several issues with
the portability of the code so made adjustments to the core
architecture to resolve this. As a result, the fork was no
longer compatible with the LP17 MCUs and the flexibility
was lost. At Diamond, we are interested in combining our
existing ST Microelectronics infrastructure with openMMC
to produce new AMCs. As such, we created this project to
complete the integration work that CERN started, thereby
introducing a new ARM device into the firmware.

THPDPO78
1529

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

== Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

..

Plant Simulation

WORKFLOW

The project was broken up into two primary workflows:
The first outlined the creation of a test environment to rapidly
deploy the firmware and test the integration work as it was
completed. This was based around an STM32 Nucleo de-
velopment board, which had its own board implementation
created in openMMC. The second captured the integration
work required to port the code to openMMC. An initial ap-
proach was laid out, which involved an investigation of the
CERN fork, followed by a more detailed breakdown and
reform of the commits. To conclude the project, a meeting
was organised with the maintainers of openMMC to discuss
the changes and seek approval before submitting the pull
request.

TEST ENVIRONMENT

A harware-in-the-loop test environment was created to al-
low for rapid deployment of the openMMC code during the
reform. This was realised as a hardware stack that simulates
an AMC connecting to the MicroTCA shelf and communi-
cating with the MCH. Low-cost development boards were
used to reduce workload and provide a widely accessible
testing solution.

Figure 1 grants an overview of the test environment, with
the hardware stack being shown in Fig. 2. The MMC is
represented by a Nucleo-F303RE development board [9]
where openMMC will be deployed. Alongside this, a custom
sensor shield provides interfaces to all of the modules that
openMMC supports (e.g. 12C, LEDs, ADCs, Hot Swap
handle etc.). Four breakout headers allow an engineer to
connect and test each of the supported I2C sensor modules
(e.g. LM75, ina220, max6642 etc.). Using this design,
an engineer can create several board implementations in
openMMC and verify their operation without ever touching
a real MicroT'CA system. Together, the Nucleo development
board and the sensor shield represent a complete AMC and
the embedded system under test.

Mounted between these is a Seeeduino V4.2 [10], which
is an Arduino-compatible board based on the ATmega328P
MCU. A switch allows the system supply voltage to be ad-
justed between 3.3V and 5V, which is required to match
the 3.3 V operating voltage of the Nucleo’s I/O pins. The
board serves as the primary power supply for the system,
receiving power from a microUSB port and distributing it

THPDP078
1530

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-THPDPO78

...

Embedded System Under Test

(MCH) (AMC)
. Nucleo
MMCTester Seeeduino : : AMC Sensor
(HostPC) /—YSB vaz [N R Shield

Emulated]

Hotswap

Figure 1: Block diagram outlining the hardware-in-the-loop test environment

to the stack via the interconnected power pins. Its primary
function is to represent the physical component of the MCH
by providing an I2C interface between a connected computer
and the Nucleo development board. Requests and control
signals can be sent to the Seeduino via a host PC, which will
either be processed or forwarded on to the Nucleo MMC.
Responses can then be sent back to the host PC for display
or further processing.

Figure 2: Harware Stack with TMP75 temperature sensor.

MM CTester

MCH commands are simulated using an in-house utility
package called MMCTester. This utilises two communica-
tion interfaces: A USB UART connection between the host
PC and Seeeduino, and an I2C connection between the See-
duino and Nucleo. In a MicroTCA system, the MMC and
MCH communicate using the Intelligent Platform Manage-
ment Interface (IPMI). This is a set of standardized specifica-
tions that provide management and monitoring capabilities
irrespective of the host’s operating system. In MMCTester, a
python package called pyIPMI provides the libraries required
to send and receive commands over the IPMI protocol.

User interaction is provided by a terminal user interface
that displays the FRU data and current state of the attached
sensors. As with a real system, the application will obtain
the FRU data of the Nucleo MMC and display some of its
properties to the user to verify this process. Afterwards, the
user can control the state of the hot swap handle and confirm
the operation of the sensors defined within the FRU data.

Hardware

Hardware Technology

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Board Implementation

Initially, the board was implemented using CERN’s fork
of openMMC. The idea was to establish an initial working
state, so that any errors made during the integration would be
flagged up during testing. CERN’s branch contained their
own board implementation, an enhanced Rear Transition
Module (eRTM), which included an STM32 chip. Since it
was from the same family as the chip on the Nucleo board,
we were able to use their implementation as a model for our
own.

In this sense, the pin mapping and I2C configuration files
were setup with the correct ports, but required modifications
to the function of each pin/channel. The drivers for any
payloads were removed and a dummy ’power good’ function
was written in place for testing. This used the sensor boards
ADC channel to monitor when power had been applied to
that pin. The Sensor Data Record (SDR) list, used during
runtime, was cleared and again replaced with information
on our power good sensor. Finally, the CMakeLists.txt file
that contained the boards configuration of openMMC was
modified to include our desired list of modules and driver
code.

CODE INTEGRATION

The first task was to identify at which point in the commit
history did the work that CERN carried out first take place.
With this information, we could pinpoint all of the changes
that were related to providing STM32 support (ignoring the
rest) and review them subsequently. A clone of the CERN’s
fork was created internally and new branch was produced
from that to perform the integration. The upstream open-
MMC repository was added as a new remote and by using
the ‘git merge-base‘ command, we identified the common
ancestor between our local branch and the upstream master.

154 commits were shown to be made on top of the com-
mon ancestor providing the new support. By inspecting the
modified files, we could quickly identify those that were
not required, which if we could discard would significantly
reduce our workload. The git project recommends git-filter-
repo as a tool for rewriting history, which provided us with
this capability. Using the common ancestor as our starting
point, we removed all commits relating to two directories:
port/board and boot/. The port/board directory contained
CERN'’s eRTM board implementation, which was not re-
quired for the support and was likely to fail after the code had
been generalised. The boot directory similarly contained
modifications for the eRTM, which were board specific and
overrode the original bootloader code.

The remaining 84 commits were analysed and those sus-
pected of requiring modification or removal were docu-
mented. Those that were not documented, included the core
STM32 library code and drivers written for the modules in
openMMC. These were kept by default.

Hardware

Hardware Technology

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO78

Board Specific

The majority of outstanding commits were based around
code supporting the eRTM board. The design included an
FPGA, which required a number of interfaces and drivers
to run. On review, we found additions to the link drivers,
UART, SPI, and hotswap modules to support this. Typically,
we found that any board specific additions were isolated to
a single commit, so could be dropped without affecting any
of the base code. However, in some cases we discovered
that core functions had been removed or bypassed entirely to
prevent tasks from blocking or producing errors at run-time.
In one such instance, the LED module had been bypassed
using a series of return statements in its functions. Unlike
the other modules, the LEDs are a forced component in
openMMC so could not simply be omitted via a change in
the configuration. The eRTM board did not include any
LED:s in its design, so would have likely caused errors when
attempting to run the software. In cases such as these, the
commits were dropped as supporting the board was outside
of the scope of this project.

IPMB Configuration

The IPMB configuration was found to be hard coded,
forcing the user to use a specific I2C port for IPMI commu-
nications. This was traced back to the STM32 12C driver
where we found the source in the initialisation code. On
review, there were a number of opportunities for the code to
be optimised, so we made the decision to rewrite it.

Each I2C interface was defined in a structure that con-
tained a number of properties associated with it. One of
these was an ID number, which was represented by an enu-
merator. In the initialisation routine, a unique input was used
to determine which port was to be initialised using a case
statement. By replacing this input with the ID, the readabil-
ity of the code improved and we found that we were able to
reduce some of the duplicated lines within the function.

In the case of 12C2, we found additional code for setting
it up as a slave for IPMB. This required a flag to be set in the
configuration, specifying that the port should be used in this
way. Despite being the only port with this option, there was
a number of slave specific routines that ran after the case
statement for any port flagged in this way. To generalise this,
we extracted all of the slave code and created a second routine
for slave initialisation. We then used a constant defined in
the board configuration to allow flexibility on which port
would be set up in this way. As a result, any port that was
defined as an IPMB channel in the board configuration was
reinitialised as a slave in the 12C init.

At the end of the routine, there was some initialisation
code that was common to all I2C ports. As the function
had now been broken up into two initialisation routines, the
code was extracted into its own common init. The final
architecture contained three routines: one for setting up an
12C master, one for setting up an 12C slave, and one common
to both to complete the initialisation.

THPDPO78
1531

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

r, and DOI

publishe

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

HISTORY

Having reviewed all of the commits, a consideration was
made for the outstanding history. With commits being mod-
ified, dropped, extracted or broken down, the history was
disjointed and the messages were no longer reflective of
their contents. To resolve this, the list of modified files were
reviewed and a new set of commits were drafted. The inten-
tion was to compress the history into a single commit, then
break it up into a small number of commits that highlighted
the core components of the support work. These were as
follows:

 Add support for STM32F30x microcontroller

e Add I2C support

* Add ADC support

* Add OpenOCD configuration

TESTING

Frequent testing was carried out over the course of the
code review using the hardware-in-the-loop test environ-
ment. This helped to verify that the work done to the I12C
drivers and other modules were functioning as commits were
reduced. A notable issue was discovered early on, where
the firmware would freeze after initialisation with no clear
indication as to the cause. It was later found to be a prob-
lem in the IPMI module, where the FreeRTOS stack size
had been hard coded for the original LPC17 controllers. As
openMMC receives more controller support, the stack sizes
will need to be adjusted on a case-by-case basis. To resolve
this, it was made into as a constant and added to the IPMB
header file to make it easier to adjust and a single source of
truth.

Once all of the modifications had been made, a final push
was made to test all of the components in openMMC. The
LEDs, IPMB, UART debugging and hotswap moules were
all active during the code review, so were tested by default.
This left the sensor I12C port, ADC module, and each of
the supported sensors themselves. Small breakout boards
were made for the sensors, which were plugged into the
sensor shield and tested alongside the sensor I2C port. The
ADC was testing using the power good signal, which was
set up as a payload when the board was first implemented.
By adding each module consecutively to the list of target
modules, we were able to build up a complete profile of
openMMC covering the majority of features and proving
them complete.

LICENSING

openMMC is an open source project, so it is important
that the code being used comes under a compatible licence.
When porting the code, we came across a number of in-
stances where the licences were not suitable to be used in
this application.

The first instance was within the STM32 linker script.
When CERN had generated the code, it had been done so us-
ing Atollic TrueSTUDIO, which is an enhanced C/C++ IDE.
Code generated in this way comes with a licence that restricts

THPDPO78

—
[}
w
N

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO78

it from being used outside of an Atollic TrueSTUDIO project.
Fortunately, as the linker is a core component of an STM32
project it can be reproduced using the STM32CubelDE. Files
generated from this use a GPL compatible license, which is
required to be used in openMMC.

After the code had been tested, it underwent a review
from the maintainers of openMMC. During this, they dis-
covered that the core standard peripheral libraries contained
a licence that was not compatible with the project. The stan-
dard peripheral libraries provide the core drivers for STM32
devices, but have since been deprecated. Instead, a more
modern approach is to use the Common Microcontroller
Software Interface Standard (CMSIS) from Arm, with the
STM32 Hardware Abstraction Libraries (HAL) for device
specific control [11]. As with the linker, these libraries can
be generated from the STM32CubelDE and contain a GPL
compatible license. However, in replacing the core libraries,
the names and inputs of the back-end functions have all
been updated. Therefore, additional effort is now required
to adapt the existing code to use the new driver functions.

CONCLUSION

openMMC is an effective non-commercial solution for
designing in-house AMCs and replicating MMC behaviour.
In this project, we integrated a CERN fork of openMMC
supporting STM32 microcontrollers, and verfied it using a
low-cost hardware-in-the-loop test bed. Introducing a new
Arm device into the project has created new opportunities
for Diamond to produce a number of specialist AMCs. As
part of the Diamond II program, openMMC will be adopted
to create a number of AMC:s for high speed signal processing
applications.

REFERENCES

[1] PICMG MicroT'CA Overview, https://www.picmg.org/
openstandards/microtca/

[2] VadaTech MicroTCA Overview, https://www.vadatech.

com/media/pdf_MicroTCA_Overview.pdf

[3] Diamond Light Source, https://www.diamond.ac.uk/

Home.html
[4]

Diamond II programme, https://www.diamond.ac.uk/
Home/About/Vision/Diamond-II.html

openMMC, https://github.com/1Inls-dig/openMMC

H. A. Silva and G. B. M. Bruno, “openMMC: An Open
Source Modular Firmware for Board Management”, in Proc.
PCaPAC’ 16, Campinas, Brazil, Oct. 2016, pp. 94-96.
doi:10.18429/]ACoW-PCAPAC2016-THPOPRPO04
FreeRTOS, https://www. freertos.org/

CERN, https://home.cern/

Nucleo-F303RE, https://www.st.com/en/
evaluation-tools/nucleo-£303re.html

Seeeduino V4.2, https://www.seeedstudio.com/
Seeeduino-V4-2-p-2517.html#

CMSIS documentation, https://arm-software.github.
io/CMSIS_5/General/html/index.html

(3]
(6]

(7]
(8]
(9]

[10]

(11]

Hardware

Hardware Technology

