
STREAM-BASED VIRTUAL DEVICE SIMULATION FOR ENHANCED
EPICS INTEGRATION AND AUTOMATED TESTING

M. Lukaszewski∗, K. Klys, E9 Controls Limited, London, UK

Abstract
Integrating devices into the Experimental Physics and

Industrial Control System (EPICS) can often take a subopti-
mal path due to discrepancies between available documen-
tation and real device behaviour. To address this issue, we
introduce “vd” (virtual device), a software for simulating
stream-based virtual devices that enables testing communi-
cation without connecting to the real device. It is focused on
the communication layer rather than the device’s underlying
physics. The vd listens to a TCP port for client commands
and employs ASCII-based byte stream communication. It
offers easy configuration through a user-friendly config file
containing all necessary information to simulate a device, in-
cluding parameters for the simulated device and information
exchanged via TCP, such as commands and queries related
to each parameter. Defining the protocol for data exchange
through a configuration file allows users to simulate various
devices without modifying the simulator’s code. The vd’s
architecture enables its use as a library for creating advanced
simulations, making it a tool for testing and validating device
communication and integration into EPICS. Furthermore,
the vd can be integrated into CI pipelines, facilitating au-
tomated testing and validation of device communication,
ultimately improving the quality of the produced control
system.

INTRODUCTION
EPICS (Experimental Physics and Industrial Control Sys-

tem) is one of the most widely used frameworks for design-
ing distributed control systems for large experiments such
as accelerators and observatories [1].

Integrating new devices into the EPICS can be challeng-
ing. This is often attributed to the dissonance between doc-
umented device behaviours and their operations. This dis-
parity can lead to sub-optimal integration paths, potentially
compromising the robustness and reliability of the control
system.

Another layer of complexity arises due to project delays,
making it increasingly difficult to test the devices on time.
Sometimes, specific devices can only be tested once they
are delivered. This further exacerbates the challenges faced
during integration, increasing the potential for integration
errors and system malfunctions.

A solution to this problem could be writing device simula-
tors and creating integration tests based on these simulators.
While this may sound straightforward, crafting simulators is
time-consuming. This is primarily because it necessitates
extensive programming and a profound understanding of the
device’s behaviour. The effort to develop a simulator can
∗ marcin.lukaszewski@e9controls.com

sometimes feel counterintuitive, as the time invested only
sometimes aligns with the benefits received. Furthermore,
developing simulators demands a different set of networking
and programming skills than those used daily by control sys-
tem engineers. It also requires additional effort to ensure the
simulator remains updated and consistent with the device’s
documentation.

In our pursuit to streamline and enhance the integration
process, we are committed to simplifying the creation of sim-
ulators. In our solution, we deliberately bypass the portion
of the simulator responsible for the device’s behaviour, con-
centrating solely on the communication layer. This approach
allows us to create specific device states by externally adjust-
ing parameter values. Simultaneously, we can verify that the
simulated device communicates these changes appropriately
using the designated protocol.

By modifying parameters through a separate channel from
the one used by the client, we can establish an automated
test suite as part of a continuous integration process. This
allows us to set up a grid of tests covering all the essential
device states without coding the device’s behaviour.

ARCHITECTURE
The software’s architectural design comprises four dis-

tinct layers delineated in Fig. 1. It employs the Golang
programming language, leading to a single binary file as
output. The absence of external dependencies in this config-
uration simplifies the distribution process and augments its
compatibility, ensuring seamless execution across a diverse
range of operating systems.

In the architectural design, the layers were interconnected
via interfaces. Within the Golang programming language
context, interfaces serve as a core way to construct com-
plex systems. These systems comprise modular components,
each of which can be independently developed and tested.
Such an approach fosters flexibility and ensures that the
Stream layer can be substituted in the future with an alterna-
tive layer accommodating different communication protocol
formats, should the need arise.

Notably, Fig. 1 omits elements related to the reading of
the configuration file in the TOML format and the logging
mechanism. This intentional exclusion ensures clarity and
prevents obfuscation of the primary architectural representa-
tion.

TCP Server
The first layer under discussion is the TCP Server. It is

constructed based on the standard library available in Golang.
Golang, known for its efficient concurrency management
and clean syntax, offers developers a solid foundation to
build robust systems.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP076

THPDP076

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1522

Software

Software Architecture & Technology Evolution

Figure 1: Software architecture.

One of the distinct advantages of using Golang’s standard
library for the TCP Server is the multi-platform compatibil-
ity it brings to the table. This means that applications built
with this foundation can run seamlessly on various platforms
without significant modifications. This multi-platform na-
ture aligns well with today’s need for diverse computing
environments, from traditional servers to modern cloud in-
frastructures.

Moreover, the number of dependencies in the project is
minimised by utilising the standard library. Reducing exter-
nal dependencies not only simplifies the maintenance and
updating process but also enhances the security and stability
of the software. Fewer dependencies mean a lower risk of en-
countering compatibility issues or vulnerabilities associated
with third-party libraries.

Upon reading data from the client, the TCP Server for-
wards it to the subsequent layer using the “Handle” method,
which is part of the Handler interface. This method, acting
as an intermediary function, has a crucial role in the entire
data processing chain, ensuring that data flows smoothly
from one component to another.

type Handler() interface {
Handle([]byte) []byte

}

Due to this specific data structure, the TCP Server does not
undertake the task of protocol decoding. Instead, its primary
role is to serve as a bridge, facilitating the transfer of raw,
unprocessed data. This design choice aids in keeping the
server’s functions modular and reduces the complexity of
integrating multiple functionalities into a single unit.

The layer referred to as “Stream” subsequently receives
this array of bytes. The architecture ensures a clear sepa-
ration of concerns by keeping the TCP Server decoupled

from the decoding process. This separation enables easier
debugging, modification, and potential system expansion.
With each layer having its distinct responsibilities, develop-
ers can modify or enhance a specific part without causing
disruptions to the entire ecosystem.

Stream Layer
The “Stream” is a module in which the analysis of incom-

ing data to the simulator takes place. It assigns the incoming
data to the respective command, parameter, and value (if
applicable). The simulator maintains a clear separation of
responsibilities by centralising the data analysis and routing
functions within the Stream module.

Lexer We have decided to write the custom lexer in-
spired by Rob Pike presentation titled “Lexical Scanning in
Go” [2]. Its task is to convert byte messages into understand-
able for parser tokens. It is based on the state machine that
goes to the next logic state by returning the state function
depending on the current result of scanning. The change
of the state is triggered by the scanner that divides bytes
messages into runes (Golang alias for int32 representing
Unicode CodePoints). Thanks to that, the lexer can detect
not only standard characters but also symbols. The state
function is a piece of code that emits tokens and detects er-
rors. When the message is parsed and converted into tokens,
they are transferred to the parser.

Parser This parser must determine the exact transmit-
ted command based on the tokenised input. By comparing
the incoming data against the list of recognised tokens, the
parser can quickly and accurately ascertain the nature of the
command, allowing the simulator to respond or act accord-
ingly.

Parameters
The “Parameters” layer is responsible for managing the

values of the parameters of the simulated device. When
the simulator is launched, these parameters are dynamically
created from a configuration file. They can be of various
types: int, int32, int64, float32, float64, bool, and string.
During the setting of a value, the new value type is verified,
ensuring that one cannot assign an inappropriate value to
a specific parameter type. The design considerations for
this dynamic creation are rooted in the need for adaptability
and customisation, allowing the simulator to be versatile in
representing different device configurations and behaviours.

Furthermore, the parameters employ a mechanism called
mutual exclusion. This is crucial as it simultaneously per-
mits safe access to a parameter from multiple points within
the program. Mutual exclusion mechanisms ensure that data
races and other concurrency-related issues are avoided, main-
taining the integrity and reliability of the parameter values,
even in complex, multi-threaded environments.

This safety mechanism is of paramount importance for
our simulator. Since parameter values can be altered concur-
rently by a TCP client and through a dedicated API, there

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP076

Software

Software Architecture & Technology Evolution

THPDP076

1523

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

is an inherent risk of conflicts or unsynchronised changes.
The simulator guarantees consistent and accurate updates
by utilising mutual exclusion, ensuring that the simulated
device behaves reliably, irrespective of the number or nature
of simultaneous interactions.

HTTP API
The “vd” exposes the parameters of the current simulator

instance as a simple REST (Representational state transfer)
API (Application Programming Interface). One can modify
the virtual device parameters with the HTTP POST method
and read them by sending a GET verb. The HTTP rout-
ing is done with a “chi” router for GO HTTP services [3].
Users can send queries using external tools like CURL, web
browser, or CLI (Command Line and Interface) commands.

Configuration
Configuring the simulator involves creating a text file in

the TOML format. By default, this file is named “vdfile”,
but it can have a varied name and extension since users can
direct the simulator to a specific file for simulation. TOML
aims to offer a streamlined configuration file format, empha-
sising simplicity and readability with its easily interpretable
semantics. The essence of TOML’s design philosophy is to
provide users with a configuration language that is machine-
and human-friendly, striking a balance between complexity
and comprehensibility.

The configuration file encompasses information about ter-
minators for both input and output commands. Additionally,
it contains an array of tables where each table describes a
particular parameter.

This is vdfile config

[terminators]
intterm = "CR LF"
outterm = "CR LF"

[[parameter]]
name = "current"
typ = "int"
req = "CUR?"
res = "CUR %d"
set = "CUR %d"
acq = "OK"
val = 300

[[parameter]]
name = "version"
typ = "string"
req = "VER?"
res = "%s"
val = "version 1.0"

The use of tables in TOML aids in organising the data
hierarchically, making it easier for control system engineers
to navigate and modify the configuration as required.

Each parameter must possess both a name and a type.
Depending on the device’s simulated functionality, a given
parameter can be read, written, or both. To specify the
communication method for these functionalities, one needs
to configure the “req”, “res”, “set”, and “ack” attributes,
respectively. Familiar placeholders, akin to those used in
the “printf” and “scanf” functions, can also be utilised.

It is worth mentioning that the names of the keywords
and the way the communication methods are configured are
designed to resemble as closely as possible the configuration
of an EPICS protocol file used in the device support mod-
ule called StreamDevice. This makes the integration with
EPICS less time-consuming and more intuitive for EPICS
users.

USAGE

Local Development
The “vd” aids during local development. It allows quick

verification of the communication layer between IOC and the
device emulator. To properly design the data transmission
on the IOC side, debugging the “vd” can be helpful. While
running the simulator with the proper flag, the console will
present all the data traffic between the “vd” instance and
the IOC (in the bytes, hex, or string format, depending on
the user configuration). This facilitates IOC debugging and
allows potential errors to be eliminated.

CI/CD
In the CI/CD (Continuous Integration/Continuous Deliv-

ery) systems, the “vd” can be used as part of the IOC integra-
tion tests in the pipeline. The testing scenario may involve
launching IOC with the “vd” based simulator, modifying
setpoint PVs, and verifying changes with corresponding
readback PVs. This simple procedure can detect commu-
nication misconfiguration on the IOC side or errors in IOC
database files at an early stage of development.

Thanks to such tests, the IOC integration with the physical
device can be more fluent and less time-consuming. Sup-
pose the device documentation of that device is complete
and without mistakes. In that case, it can be stated that
no modifications to the IOC communication layer can be
required after tests with “vd” tool.

The test procedures based on “vd” can be part of Gitlab
CI/CD or Github Actions if the IOC is stored in the code
repository. After each commit, the pipeline with the test
steps can be run, and the user will be quickly informed about
the status of the introduced changes. Another alternative
is to launch tests with automation software like Jenkins or
Ansible on the local setup.

The “vd” tool is just a binary file without any external
dependencies, so it can be easily adapted to the existing
infrastructure or encapsulated into Docker images without
prior preparations.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP076

THPDP076

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1524

Software

Software Architecture & Technology Evolution

CONCLUSIONS
The paper precisely describes “vd” tool for simulating

stream-based virtual devices for software tests. It presents
the motivation behind the design of such a tool and how it
has been developed. The paper depicts the vd’s architec-
ture together with packages and modules. It describes the
communication layer based on TCP protocol and interfaces
exposed for parameter control.

The first version of the “vd” tool has been released. Nev-
ertheless, the process of introducing new features is still in
progress. It is planned to add new communications inter-
faces such as Modbus and other binary protocols. We are
working on new configuration parameters that allow users to
customise error messages when the wrong query has been

sent to the device or to accept arrays as parameter values.
In the meantime, we are creating new configuration files

for the devices used in the control systems we are familiar
with, where we have been involved in their development.
This allows us to verify and ensure that “vd” is able to simu-
late any device based on the stream protocols.

REFERENCES
[1] EPICS about, https://epics-controls.org/about-
epics/

[2] Lexical Scanning in Go, https://go.dev/talks/2011/
lex.slide

[3] Lightweight, idiomatic and composable router for building Go
HTTP services, https://github.com/go-chi/chi

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP076

Software

Software Architecture & Technology Evolution

THPDP076

1525

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

