
SciLog: A FLEXIBLE LOGBOOK SYSTEM FOR 
EXPERIMENT DATA MANAGEMENT 

K. Wakonig†, A. Ashton, C. Minotti, Paul Scherrer Institut, Villigen PSI, Switzerland

Abstract 
Capturing both raw and metadata during an experiment 

is of the utmost importance, as it provides valuable context 
for the decisions made during the experiment and the 
acquisition strategy. However, logbooks often lack 
seamless integration with facility-specific services such as 
authentication and data acquisition systems and can prove 
to be a burden, particularly in high-pressure situations, for 
example, during experiments. To address these challenges, 
SciLog has been developed at the Paul Scherrer Institut. Its 
primary objective is to provide a flexible and extensible 
environment, as well as a user-friendly interface. SciLog 
relies on atomic entries in a database that can be easily 
queried, sorted, and displayed according to the user's 
requirements. The integration with facility-specific 
authorization systems and the automatic import of new 
experiment proposals enable a user experience that is 
specifically tailored for the challenging environment of 
experiments conducted at large research facilities. The 
system is currently in use during beam time at the Paul 
Scherrer Institut, where it is collecting valuable feedback 
from scientists to enhance its capabilities.  

INTRODUCTION 
Metadata is defined as the data providing information 

about one or more aspects of the data; it is used to 
summarize basic information about data that can make 
tracking and working with specific data easier. [1] It 
includes, among many, information about the source of the 
data, its process and responsible people and the location on 
a computer network where the data was created and 
collected.  

It also covers unstructured information collection, for 
example, notes on a data acquisition process or keeping 
track of important TODOs. SciLog [2, 3] was developed 
specifically with this in mind, namely to improve the 
storing and reuse of unstructured metadata and as a 
consequence improve the FAIRness of data [4]. It aims at 
replacing legacy pen and paper experimental logbooks, 
often used in large-scale facilities during beamtime and 
often messy to consult and prone to information loss. It also 
supports features to monitor an experiment, by watching 
messages posted by the beamline to it. Each message is an 
atomic entry in the database, which means that every 
message can be decoupled from the rest of the 
environment. It also supports collaborative editing. 

 First, we will introduce the components of SciLog and 
a few key concepts that are useful to better comprehend the 
rest of the article. Then we will move to present the 
creation of logbooks, the search functionality, the TODOs 
support and the main logbook widget, which enables 

displaying, adding and modifying messages. The widget 
can display messages ordered by date and can provide 
information about, for example, the time of insertion and 
the author. 

We will address how SciLog can be scaled to 
accommodate high volumes of metadata and usage.  

In order to maximize data dissemination, we will present 
the Python [5] libraries that have been developed to interact 
with SciLog to post and get metadata. 

We will finally close the article with future directions 
that the community envisions for SciLog. 

DESIGN OVERVIEW 
The next sections discuss the technicalities of the 

implementation of SciLog, including the choice of the 
underlying technologies and frameworks.  

The SciLog stack is organised following a microservice 
architecture, where each service can be containerised and 
configured to interact with the others and the pre-existing 
facility infrastructure, following standard TCP [6] 
communication protocols, such as HTTP(s) [7] and Web-
Sockets [8]. All SciLog services communicate with each 
other through HTTP or Web-Sockets.  

The backbone of the ecosystem is the backend which 
relies on a Mongo Database [9], the connection to which 
must be configured as part of the setup. The backend is also 
responsible for defining the data model which formalizes 
the scaffolding of the metadata fields, setting the required 
ones and leaving great flexibility for customization.  

Data Model 
The data model defines which information is stored and 

how it is structured, by mapping the SciLog entities with 
records on the database.  

Each SciLog entity has a representation in the data 
model in the underlying MongoDB and a subset of fields 
is controlled by validation rules imposed by the backend.  

The majority of entities share the same common 
structure and fields subset, and they differ by adding entity-
specific fields or mentioning the entity type specifically in 
one (snippetType). It is often convenient to store 
dependencies between SciLog entities in the database, and 
this can be achieved using the concept of one-to-many 
relationships between documents in MongoDB [10]. 

The main SciLog entities are: 
 Basesnippets 
 Locations 
 Logbooks 
 Images 
 Paragraphs 
 Tasks 

 ___________________________________________  

† klaus.wakonig@psi.ch 

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP073

THPDP073

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1512

Software

Software Architecture & Technology Evolution



Basesnippets: it's the collection which groups all other 
aforementioned entities. Its purpose is to define fields 
common to all other entities and apply common rules and 
logic. It enforces, for example, documents to have a 
createdAt field and of type date. Notably, it ensures that all 
child entities specify a snippetType field, which will allow 
distinguishing between the type of entities in the database. 
It also requires child entities to specify ACLs [11], which 
check authorizations comparing the entities with the user 
attributes. 

Locations: it is the group of Basesnippets with 
snippetType=location. It facilitates the assignment of 
logbooks and entries to a specific instrument, beamline and 
facility.  

Logbooks: distinguished by snippetType=logbook, this 
Basesnippet encodes the meaning of a logbook the scientist 
would allocate when the experiment starts. It is often used 
to group messages together and can be referenced by 
Paragraphs, as will be explained later. Think of it as the 
book where the notes on the experiment would belong. 

Images: grouped by snippetType=image, it’s where 
images or attachments are stored. This makes use of the 
MongoDB GridFS functionality. 

Paragraphs: with snippetType=paragraph, it is a 
representation of the paragraphs a scientist would write in 
a logbook. They reference Logbooks in the ParentId field, 
which enables linking them to the Logbook they belong. Its 
textcontent field allows storing the text of the paragraph, 
and if HTML-encoded it is rendered accordingly in the 
SciLog frontend. 

Tasks: as Basesnippets with snippetType=task, it allows 
creating TODOs. Each Task is a MongoDB document and, 
as for the Paragraphs case, it can reference the Logbook 
the task is applicable to in the ParentId field. 

Technologies 
The core services of SciLog are the backend, 

encapsulating the core logic of the data catalogue, and the 
frontend, presenting the information to the users. 

The backend, providing the RESTful API [12], user 
authentication and authorization, data management and the 
interface to the database, is the portion of SciLog running 
server-side which operates on and stores the information in 
the underlying database. It manages the user login and 
enforces access permissions. It is developed in Typescript 
[13] using the framework Loopback4 [14]. It uses 
MongoDB as a database through a Loopback4-specific 
MongoDB ORM [15]. The backend implements the 
classical REST API with ACLs for authorization. It 
supports local administrative accounts and OIDC 
authentication [16]. It supports all CRUD [17] operations 
to operate on metadata records, such as Basesnippet, 
Logbooks, or Paragraphs creation, updates and display. 

The backend provides a Swagger UI [18] which exposes 
the endpoints, detailing the expected input and output 
formats and types. It also complies with the OpenAPI 
initiative [19]. 

It allows configuration through environmental variables 
and JSON files. The administrators can deploy the backend 

on bare OS or within a Docker [20] container through an 
orchestration system like Kubernetes [21]. The latter is the 
preferred solution in many adopting facilities. The 
minimum required configuration consists of setting the 
connection to the database. The backend allows for 
additional customisation, although it would also require a 
customised deployment and additional existing 
infrastructure, for example, a connection to an Identity 
Access Management [22] system which supports OIDC. 

The frontend is the portion running on the client browser. 
It is a single-page [23] application developed with the 
Angular framework [24] which is based on Typescript. It 
provides a user-friendly UI to display and search 
Logbooks, according to the user’s authorization. It supports 
the user to create customised views of Logbooks, including 
the Paragraphs and Task CRUD operations. It only 
presents information and for the computation leverages the 
backend REST API. 

Scalability 
SciLog harnesses the power of Docker containers and 

Kubernetes orchestration to achieve seamless scalability 
and efficiency. By embracing the containerization 
paradigm, SciLog empowers research institutions and 
laboratories with a sophisticated solution, enabling them to 
effortlessly store, “organize, and retrieve metadata while 
adapting to the ever-evolving demands of data volumes. 

In this ecosystem, Docker containers provide flexibility 
and consistency. These self-contained units encapsulate the 
entire metadata catalogue along with its dependencies, 
ensuring that each environment remains isolated and 
coherent. This approach not only simplifies the deployment 
process but also guarantees that the application functions 
uniformly across various setups. 

SciLog publishes builds of its code as containers that can 
be deployed in a variety of container deployment solutions, 
such as Kubernetes. 

MongoDB as the underlying database ensures fast 
querying together with powerful search capabilities.  

FEATURES AND FUNCTIONALITIES 
We move now to present some of the features SciLog 

provides. In the following sections, different capabilities 
are presented, focusing in particular on the most used. 

Authentication, Authorization and Sharing 
SciLog supports the OIDC protocol, thus allowing for 

flexible user authorization without the need to create new 
accounts for users and for the facility to manage multiple 
users’ identities. SciLog can leverage the internal 
authorization mechanism if needed, which can be 
expanded using its sharing functionality. 

Logbooks Overview and Search 
After login, the users are confronted with a page showing 

the list of Logbooks (i.e. experiments) they can access. 
Each displays a minimal subset of information, to ease the 
browsing. The user can also search across Logbooks, with 
the search bar at the top of the page, as shown in Fig. 1. 

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP073

Software

Software Architecture & Technology Evolution

THPDP073

1513

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



This sends a query to the backend to the Logbooks 
endpoints. 

 
Figure 1: Example overview of Logbooks. In the top left, 
the Search can filter the displayed Logbooks. 

Logbook Display 
Selecting a Logbook brings the user to a View which 

formats information in a format previously selected by the 
user or applies a default. Typically, the user would see a 
widget containing the list of Tasks relative to the Logbook, 
and a “chat-like” widget where members of the experiment 
can send, edit and delete messages collaboratively. An 
example is shown in Fig. 2. 

It is worth briefly introducing the distinction between a 
Logbook and a Logbook View, or simply a View. A Logbook 
is an entity in the database that can be compared to a 
“book”, as mentioned before. A View is an additional 
document in the database that stores information on what 
to display when a particular user clicks on a Logbook from 
the overview page. The View controls what the user sees 
and it is not bound to display information on a single 
Logbook. As part of the configuration of the View from the 
UI, the user can in fact select which Logbooks to display in 
every widget of the View. We will then call the Logbook the 
user clicked on in the overview Target Logbook and the list 
of additional ones Additional Logbooks. Different widgets 
in the same View can have different Target Logbooks and 
Additional Logbooks, which can be set individually by the 
user. The default is to set the Target Logbook to the clicked 
one and Additional Logbooks as an empty list. 

 
Figure 2: Example of a Logbook View. On the left, the Task 
widget exemplifies the task support. The widget on the 
right shows the “chat-like” Logbook widget. 

Tasks Manipulation 
Using the Task widget the user can create, delete or mark 

as done tasks that should be remembered. The left part of 
Fig. 2 shows a typical Task widget usage, guiding the user 
through the beamtime. 
Paragraphs’ Manipulation 

In the Logbook widget, the user can see paragraphs 
relative to the Target Logbook and Additional Logbooks, 
sorted in descending or ascending order and can append 
further paragraphs. Multiple types of Paragraphs are 
supported, such as simple text, images, attachments, code 
snippets, etc. Users can also comment, edit, and reply to a 
Paragraph, as shown in Fig. 3. 

  
Figure 3: Example of Paragraphs types. Normal logbook 
entries are shown in white. In addition, users can reply to 
already existing entries with a greyed-out reference to the 
original entry. Alternatively, entries can be further 
annotated using comments, highlighted in yellow.  

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP073

THPDP073

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1514

Software

Software Architecture & Technology Evolution



Paragraphs can also be tagged, which can be used to 
later filter Paragraphs of a Target Logbook, as shown in 
Fig. 4. 

 
Figure 4: Example usage of tags as filters. 

Ingestion 
It is often useful to automatically create an empty 

Logbook on experiment proposal approval. SciLog covers 
this by exposing REST APIs for each entity and providing 
a Python SDK [25] which can ease its interaction. This 
means that a facility could easily implement appropriate 
Python scripts that are responsible for POSTing Logbooks 
on proposal approval, assigning the Logbook to the correct 
group and setting preliminary information. This solution is 
currently in place at PSI. 

OUTLOOK 
We aim to increase the number of features supported by 

SciLog, in particular by extending the Python SDK and the 
UI, for example, adding support for Threads in the 
Logbooks widget, which would allow users to start 
communication threads from a Paragraph. The widget 
would then group these together and show them 
accordingly. 

We also plan to extend the authorization model, moving 
from a simple reader-owner model to a full-fledged role-
based one.  

Enabling other beamlines at PSI to roll out SciLog is 
given great importance, as the more users the greater the 
commitment, and the faster the development. 

Linking the SciCat data catalogue [26, 27] with SciLog 
is also looked at, as preserving logbooks as part of 
experimental metadata is more and more becoming a 
fundamental need. 

CONCLUSION 
The development of the Python SDK and the REST API 

that the backend implements have proven a successful 
choice as they have fostered the development of tools to 
either automatically create Logbooks, automatically POST 
messages and finally export Logbooks from other ELNs, 
translate and import into SciLog. 

The growing adoption of beamlines promises to enhance 
SciLog's visibility and foster a more extensive and vibrant 
community, both within and beyond PSI. 

ACKNOWLEDGEMENTS 
We would like to warmly thank Dr. Stephan Egli who 

massively contributed to the development of SciLog, 
actively and through his strenuous support. 

We wish him a happy retirement. 

REFERENCES 
[1] A Guardian Guide to your Metadata, The Guardian, Jun. 

2013, theguardian.com 
[2] SciLog,  

https://paulscherrerinstitute.github.io/scilog 
[3] SciLog at PSI, https://scilog.psi.ch  
[4] FAIR, https://www.go-fair.org/fair-principles 
[5] Python, https://www.python.org 
[6] Transmission Control Protocol, Wikipedia, Sep. 2023, 

https://en.wikipedia.org/wiki/Transmission  
[7] HTTP, Wikipedia, Sep. 2023,   

https://en.wikipedia.org/wiki/HTTP 
[8] WebSocket, Wikipedia, Sep. 2023,   

https://en.wikipedia.org/wiki/WebSocket 
[9] MongoDB, https://www.mongodb.com 

[10] MongoDB One-to-Many,   
https://www.mongodb.com/docs/manual/tutorial
/model-referenced-one-to-many-relationships-
between-documents 

[11] Access-control list, Wikipedia, May 2023,  
https://en.wikipedia.org/wiki/Access-
control_list 

[12] REST, Wikipedia, Sep. 2023,  
https://en.wikipedia.org/wiki/REST 

[13] Typescript, https://www.typescriptlang.org 
[14] Loopback4, https://loopback.io/doc/en/lb4 
[15] Loobpack4 MongoDB connector,   

https://loopback.io/doc/en/lb4/MongoDB-
connector.html 

[16] OpenID Connect, Wikipedia, Aug. 2023,   
https://de.wikipedia.org/wiki/OpenID_Connect 

[17] Create, read, update and delete, Jul. 2023, Wikipedia,  
https://en.wikipedia.org/wiki/Create,_read,_
update_and_delete 

[18] Swagger UI, https://swagger.io/tools/swagger-ui 
[19] OpenAPI initiative, https://www.openapis.org 
[20] Docker, https://www.docker.com 
[21] Kubernetes, https://kubernetes.io 
[22] Identity management, Wikipedia, Aug. 2023,   

https://en.wikipedia.org/wiki/Identity_manage
ment 

[23] Single-page application, Wikipedia, Sept. 2023,   
https://en.wikipedia.org/wiki/Single-
page_application 

[24] Angular, https://angular.io 
[25] SciLog Python SDK,   

https://paulscherrerinstitute.github.io/scil
og/Ingestor/PythonSDK.html 

[26] SciCat, https://scicatproject.github.io 
[27] SciCat at PSI, https://discovery.psi.ch 

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP073

Software

Software Architecture & Technology Evolution

THPDP073

1515

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


