
TOWARDS A FLEXIBLE AND SECURE PYTHON
PACKAGE REPOSITORY SERVICE

I. Sinkarenko†, P. Elson, F. Iannaccone, W. Koorn, B. Copy, CERN, Geneva, Switzerland

Abstract
The use of third-party and internal software packages has

become a crucial part of modern software development.
Not only does it enable faster development, but it also
facilitates sharing of common components, which is often
necessary for ensuring correctness and robustness of
developed software. To enable this workflow, a package
repository is needed to store internal packages and provide
a proxy to third-party repository services. This is
particularly important for systems that operate in
constrained networks, as is common for accelerator control
systems.

Despite its benefits, installing arbitrary software from a
third-party package repository poses security and
operational risks. Therefore, it is crucial to implement
effective security measures, such as usage logging,
package moderation and security scanning. However,
experience at CERN has shown off-the-shelf tools for
running a flexible repository service for Python packages
not to be satisfactory. For instance, the dependency
confusion attack first published in 2021 has still not been
fully addressed by the main open-source repository
services.

An in-house development was conducted to address this,
using a modular approach to building a Python package
repository that enables the creation of a powerful and
security-friendly repository service using small
components. This paper describes the components that
exist, demonstrates their capabilities within CERN and
discusses future plans. The solution is not CERN-specific
and is likely to be relevant to other institutes facing
comparable challenges.

INTRODUCTION
In recent years, the use of Python within CERN's

accelerator control system has seen significant growth. The
adoption of Python as a supported language beside Java
triggered the rise of new software, spanning from
operational and expert GUIs based on PyQt [1], high level
control system APIs, offline data analysis based on
PySpark, to more recent online optimisation of operations
using Machine Learning [2].

Now with a community of over 500 users, it is essential
to provide effective support and ensure a stable and smooth
user experience, based on practices and tools discussed in
[3]. Such a service is undertaken by a dedicated centralised
team, where small efficiency improvements can have a
significant cumulative effect due to the large number of
beneficiaries. One of the encouraged practices is for users
to develop Python packages, rather than scripts, (for the
sake of versioning, testability, and reuse), and the wide use
of virtual environments (to avoid dependency collisions),

both of which stimulate frequent installation and
publishing of Python packages to a package repository. For
this reason, the “Acc-Py Package Repository” is one of the
most crucial services maintained by the team.

As an organisation with mission-critical, expensive, and
sensitive hardware, CERN operates distinct networks
separated physically and by firewall. A general-purpose
network with Internet access supports everyday use, and a
more restricted network without external access connects
accelerator-related hardware. There is a need to install
Python packages in both networks, meaning that the Acc-
Py Package Repository must provide access to third-party
packages from the Python Package Index (PyPI) at
pypi.org.

The use-cases of CERN’s accelerator control system are
surely not unique, and similar scenarios probably exist in
other laboratories, and in wider industry. Therefore, this
paper aims to share the ideas and implemented solutions
and invites readers to contact the authors, especially in the
case of an interest to contribute to further developments
under an open-source license. The functionality has been
presented at the Europython conference [4], which
confirmed the assumption of shared challenges, and initial
versions of the software have been published in [5].

ACC-PY PACKAGE REPOSITORY
The Acc-Py Python Package Repository runs as a small

set of microservices based on the FastAPI web framework.
The most important ones are “simple-repository” that
provides the index of packages for a package installer to
consider and retrieve, and “simple-repository-upload”
responsible for receiving uploaded in-house packages. A
Web User Interface (Web UI) or “simple-repository-
browser” provides a familiar user interface to discover
packages and their metadata.

Many requirements for the API microservices are driven
by the client-side de-facto tools of the Python Packaging
community, namely pip as the package installer, and twine
as the package uploader. In turn, this implies wheels as the
standard binary package format, which is the preferred
installation format, with source distributions, sdists, for
other cases and fallbacks. Quality of service is
continuously being improved by following the global
evolution of Python packaging standards developed
through the Python Enhancement Proposal (PEP) process,
in a way that is compatible with both current and future
versions of these client-side tools.

Despite there being a single endpoint for package
downloads, internally “simple-repository” is a
representation of two distinct repositories: a local one for
in-house packages, and the public PyPI repository. The pip
installer is pre-configured to communicate directly with the
Acc-Py Package Repository service instead of attempting

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP067

Software

Software Architecture & Technology Evolution

THPDP067

1489

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

to contact PyPI, as explained in [3]. On the other hand,
twine does not receive such automatic configuration
because information, such as username and password, is
different for each user. Instead, guidance is offered to use
Continuous Integration (via Gitlab CI) with build-test-
publish pipelines: The publishing job configures and uses
twine. Within the pipeline, the Gitlab Job Token is encoded
into the password sent by twine, and the “simple-
repository-upload” then verifies the authentication via the
dedicated Gitlab API.

The microservices implementation is simplified due to
the creation of reusable components that represent the
abstraction of an upstream repository. This allows
components to be chained together in the form of a directed
acyclic graph, which progressively enhances repository
data or performs operations such as caching or logging.
The result is a repository that conforms to the minimal
interface understood by all clients, also known as the
Simple Repository API, defined in PEP-503 [6]. This least
common denominator can be progressively enhanced for
clients that support newer features. For instance, it can
support the newer JSON-based communication protocol
(PEP-691 [7]), as opposed to a more verbose and harder to
parse HTML-based format. The same component
architecture allowed extracting and serving metadata files
separately from the package itself (PEP-658 [8]). The
relative simplicity of the architecture allowed the
introduction of this functionality in the “simple-repository”
even before it had been implemented in PyPI.
Encapsulation of well-defined functionality in a small,
testable upstream repository abstraction component also
permits elegant reusability. For instance, the
aforementioned component to extract metadata can be used
in both “simple-repository” and the Web UI.

The initial strategy for the Acc-Py Package Repository
service was to take an off-the-shelf solution to standardise
and simplify the operation as much as possible. Sonatype
Nexus [9] was chosen as the best candidate at the time,
following an evaluation alongside JFrog Artifactory [10]
and devpi [11] projects. Over time, and as functional
limitations and severe security shortcomings became
apparent, small web services were put in front of the Nexus
instance to work around those issues. This gradually
constrained the use of Nexus to providing storage for in-
house packages and a local cache of packages used from
PyPI. Recently, the remaining functionality was introduced
directly into the “simple-repository”, thus eliminating the
need to run Nexus and offering a more maintainable
solution for a small Python team to manage.

SECURITY
Security is especially important when running in a

mission critical environment such as an accelerator control
system. The CERN operating model requires accessing
third-party packages from PyPI within the restricted
network. Several options exist to mitigate security risks
posed by the installation of malign external software,
including: the potential to manually curate an “allow-list”
of packages which may be installed; automatic “deny-

listing” packages based on code scanning services; or
snapshotting the external repository to a specific instant to
mitigate exposure to zero-day attacks. No matter the
policies implemented in the future, strengthening the
service’s monitoring capabilities, as well as introducing
additional mechanisms such as “yanking” (PEP-592 [12]),
are seen as valuable enhancements. This chapter discusses
the security-related mechanisms in place so far.

Dependency Confusion
In 2021, a study [13] demonstrated the vulnerability of

companies to an exploit known as “dependency
confusion”. This is a type of supply chain attack, whereby
“a software installer script is tricked into pulling a
malicious code file from a public repository instead of the
intended file with the same name from an internal
repository” [14]. Thus, depending on both public and
private repositories, poses a security risk.

In Python, this vulnerability could be exploited in
multiple ways. It could install a package that runs
malicious code at runtime, but it is also possible to trick
“pip” to install a source distribution instead of a binary
package and execute malicious code at installation time,
inside setup.py. All that is needed for such a malicious
package to be delivered is to upload a package to PyPI with
the same name as one found in an internal repository,
ensuring that the version of the malicious package is
greater than that of the internal one.

In response, Microsoft released a whitepaper [15] that
suggests reducing upstream options to a single private feed
as a mitigation option. More recently, the Python
packaging community has started searching for ways to
mitigate the problem, materialised in PEP-708 [16]. While
it prevents dependency confusion, it does so by removing
the ability to host in-house packages without the risk of
“pip” denying the download if the same package name
appears on PyPI at some later point. It is believed that the
solution for scenarios requiring the installer to make the
decision, involves a proper name-spacing mechanism, such
as groupId in Maven or scopes in NPM. To date, Nexus
and possibly other repository implementations remain
vulnerable, and the issue reported to Nexus was closed in
2020 with a “won’t-fix” resolution status.

“simple-repository”, which started as a Nexus façade,
implements [15]’s recommendation by merging public and
private repositories on the server side, removing the
decision from the installer client. The defined merging
rules can be summarised as: prefer in-house packages over
public packages, no matter their version.

Such rules introduce a reverse of the vulnerability, as it
is now possible to upload an in-house package with a
publicly reserved name, e.g., numpy, and break everything
that relies on it. This is seen more as lack of fool-proofness,
rather than lack of protection against malicious intent.
Nevertheless, the solution is a façade for the package
upload, “simple-repository-upload”, that can verify
whether the name of the uploaded package collides with
the public namespace and, if necessary, reject the package
with a clear message outlining the reason. If such a name

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP067

THPDP067

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1490

Software

Software Architecture & Technology Evolution

has already been used internally, this collision is permitted
to allow uploading new versions of the in-house package.

“Yank” Support
As explained in PEP-592 [12], yanking allows deletion

of a version of a package distribution for all, except those
who have pinned their dependency to that specific version.
This is an elegant, non-invasive mechanism for reverting
releases in case of a critical problem or vulnerability
discovered post-factum.

Nexus support for mirroring the “yanked” attribute from
remote repositories arrived at the end of 2022, much later
than when it became standard practice in PyPI. In addition,
“yanking” locally hosted packages is still not possible.
Both facts led to the implementation of a workaround using
existing helper services.

The custom repository entry point brings added
flexibility to also support additional “yanks” for public
packages, should the need arise, e.g., as a rapid response to
a new vulnerability or incompatibility specific to the
accelerator control system. This information is stored in a
database on the server, and the same mechanism may be
used for “yanking” in-house packages.

Authentication and Authorization
A key feature for enterprise environments is custom

authorization, bound to the organisation’s authentication
service, typically Single Sign-On (SSO). CERN widely
uses SSO, integrated with an internal Role-Based Access
Control (RBAC) implementation [17] to manage
authorization. RBAC features fall-back authentication for
the accelerator-specific network and integrates with E-
groups [18] to facilitate authorization across user groups.

While implementing authorization may be possible with
Nexus using its groovy-based plugin system, it is costly for
Python developers, and long-term support for the plugin
system is not assured. Initially, a weak authorization
mechanism was used for a small number of registered
users. This was superseded by a Gitlab API-based
mechanism linked to the recommended use of CI/CD as the
primary means for package upload. Having “simple-
repository-upload” in place has opened the door to
implement custom authorization mechanisms, with the
Gitlab API as the first candidate.

Package ownership validation is also being worked on,
thus introducing per-package authorization into the service
for the first time. Such ownership will likely be based on a
“first to claim the name” basis, as is the case on PyPI, with
the ability to manage additional users and e-groups.
Although improving security, this introduces a possibility
for a package to become orphaned, when the responsible
changes role or leaves the organization, and is thus a topic
for future work.

Telemetry
Besides supporting security-related investigations, good

tracing brings the ability to analyse service usage to plan
further improvements.

Telemetry in the CERN accelerator control system is
based on the common ELK stack (Elasticsearch
(OpenSearch in practice), Logstash, Kibana), shared across
multiple services. Tracing download and upload events and
correlating them with access and authentication helps to
build an image of a sequence of events, while Kibana
dashboards provide visual analytics capabilities. Rotated
log files are also stored on the server for redundancy. It is
expected that events being traced, and the composition of
dashboards will continue evolving with experience and
best practices.

WEB UI
The Web UI provided by the “simple-repository-

browser” software is the common entry point for users to
find packages. It has been built such that it can be used to
display information from any Python package repository
that adheres to the Simple Repository API [6], and may
therefore be interesting to the reader even if core package
repository needs are met by other services. The UI plays an
important role in software discoverability and creates links
to supporting documentation and source code.

The Web UI service crawls and indexes the in-house
repository, as well as common packages from PyPI, and
offers a powerful search engine for package discovery. The
search results UI clearly indicates in which repository a
package has been found, allowing easy discovery of
internal software that may be reused.

For projects not previously indexed by the Web UI,
metadata is fetched and cached on demand. As a result, the
project details UI can render asynchronously. First, the
page header is rendered, then the package metadata
download is attempted from the upstream repository; if
metadata is unavailable, the remote package is downloaded
and unpacked to retrieve core metadata; metadata is then
cached, and finally the page UI is replaced with the
complete package information. The reusability of the
repository abstraction components is useful here, sharing
the metadata extraction implementation with “simple-
repository”. In this way, the Web UI can leverage PEP-658
[8] metadata served by an upstream repository, such as
PyPI, but can fall back to generating metadata on the fly in
case it is presenting results from a repository that follows
the Simple Repository API [6] standard but which doesn’t
provide PEP-658 metadata.

To improve user experience, within the trademark
constraints of the Python Software Foundation, the PyPI
look and feel has been replicated to provide an interface
familiar to every Python developer. Small modifications
have been made to display additional information, for
instance, the source repository of the package, whether it is
an in-house, or a public one. The list of package
dependencies is also displayed in the Web UI, something
not currently available on PyPI, but common in other
places, such as npmjs.org. The dependency information
has already proven its utility on several occasions when
identifying issues related to breaking changes that
sometimes get introduced by minor updates of underlying
libraries.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP067

Software

Software Architecture & Technology Evolution

THPDP067

1491

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

PERFORMANCE
With a daily average of 30,000 package downloads

(including Continuous Integration (CI) pipelines), the
package index can quickly run into performance
bottlenecks. This is especially noticeable with the rise of
Machine Learning (ML) applications since packages such
as PyTorch and TensorFlow measure close to a gigabyte in
size and frequent downloads are costly. This chapter
discusses ways to optimise the performance.

Cache
In a standard interaction with the Acc-Py Python

Package Repository, it is common to perform multiple
requests to the upstream remote repository, PyPI, to first
list the available versions of a package, then fetch the
metadata for these versions, and finally download the
desired package distribution. This introduces potential
delays that can be eliminated by caching; however, cache
must be correctly invalidated to avoid hiding recent
updates to the original source. The best approach for Acc-
Py Package Repository is to benefit from the local cache of
clients, such as “pip”, that relies on ETags [19]. It is
necessary for the service to correctly forward the ETag
header between the client and the remote repository. There
is also a place for an intermediate cache on the server, to
avoid downloading heavy packages when “pip” does not
contain any local cache, such as in a fresh CI job. Likewise,
care is needed to properly manage its lifetime and properly
refresh it whenever an expired ETag is detected.

Currently, among cached artifacts are package
distributions (both wheels and sdists), project index
responses of PyPI, project details responses of PyPI and
extracted PEP-658 metadata.

Metadata Extraction
The original design of the Simple Repository API [6]

was indeed simple, sometimes at the cost of efficiency.
One example is related to metadata. Core metadata,
including package dependencies, is stored in a file inside a
packaged distribution [20] and previously there was no
mechanism to expose it elsewhere. As a result, while
resolving dependencies on the client side, “pip” would
need to download the actual package together with its
dependencies, sometimes several versions of it, to
reconstruct the dependency graph. The answer to the
problem was proposed as PEP-658 [8] mentioned multiple
times in this paper, which suggests hosting extracted
metadata alongside package distributions. This way, “pip”
needs to download only lightweight text files instead of full
packages to resolve dependencies.

This PEP faced a lot of debate, which delayed its
appearance in PyPI. Fortunately, “pip” introduced its
support earlier, and it allowed the Acc-Py Package
Repository to roll out an on-the-fly metadata extraction
that immediately improved user dependency resolution
times and reduced bandwidth needs on the server.

FUTURE WORK
The Python Packaging community appears to have

found renewed vigour in recent years, with new
improvements being proposed frequently, aided by the
appearance of PEP-691 [7] that paves the way for future-
proof versioning of the communication protocol and
content negotiation. What follows covers several proposed
future improvements to the Acc-Py Package Repository
service, some of which are logical for any package
repository, while others add value specifically for CERN’s
control system environment.

Robustness Improvements
Thanks to server-side cache, it is possible to minimize

the need to download packages from PyPI. Additionally,
the same mechanism, when reinforced with simple logic,
can partially protect the service from the outage of the
remote repository, in cases where all required resources
have already been cached.

Security Improvements
Good security must be layered, and there is always room

for improvement. While more distant goals due to their
readiness, these topics should be foreseen.

Vulnerability scanning would be a clear improvement,
with dependency scanning for newly uploaded packages,
as well as repeated, scheduled dependency scanning of
previously uploaded packages. DTrack has been evaluated
[21] as an open-source solution and is a candidate for
potential integration in the future. Upgrading the Web UI
to present known vulnerabilities (e.g., from DTrack or an
advisory database), when browsing a package would
ensure that known bad software is not unwittingly
installed.

Enforcement of code-signing for locally hosted
packages would be another step. While currently not
widely adopted in public repositories, the technology
already exists to validate signed packages in pip, and with
a simple user workflow would offer an additional layer of
security against man-in-the-middle attacks.

Improvements to Package Authoring
While package discovery functions of PyPI have been

met by the current state of the Web UI, authors of in-house
packages do not have an interface to manage their products.
So far, it has been manageable to perform those actions at
the author’s request via support channels, but as the
number of packages and authors grows, there will be a need
to provide an admin UI for managing “yank”, setting
package ownership and removal of obsolete packages in
the future.

As mentioned previously, introducing strict
authorization and ownership rules may lead to orphaned
packages when maintainers change role or leave the
organization. Reassigning rights afterwards requires
additional support. This can be automated by integrating a
service [18] to re-assign rights to the person’s supervisor
ahead of their departure.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP067

THPDP067

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1492

Software

Software Architecture & Technology Evolution

Scalability
So far, it has been sufficient to run the service on a

dedicated bare-metal machine. With time, the number of
users and packages is growing and just a dozen of
simultaneous CI jobs, each triggering a download of 20
packages, can create a visible load on the service. A
prototype implementation to deploy the service using
Kubernetes is proposed, as a paradigm that promises
scalability under high load, and offers zero-downtime
upgrades, disaster recovery and more.

SUMMARY
Package access is a common need in many enterprise

environments, and while there are off-the-shelf solutions
for the Python ecosystem, they do not always suffice or are
not able to keep up with rapidly evolving Python packaging
standards.

This paper presented the solution to the evolving needs
of the Acc-Py Package Repository in the constrained yet
growing environment of the CERN accelerator control
system. The solution started as an off-the-shelf product and
over time has transformed into a modular, security-
oriented service that solves crucial long-standing problems
not easily addressable by generic solutions.

The initial prototype has been published in [5] under an
MIT licence, and it is hoped that it will trigger interest from
other parties that have similar operational needs. With
sufficient collaborative interest, there is the potential for
the project to be openly developed, and to power Python
package repositories across many domains.

REFERENCES
[1] I. Sinkarenko, S. Zanzottera, and V. Baggiolini, “Our

Journey from Java to PyQt and Web for CERN Accelerator
Control GUIs”, in Proc. ICALEPCS'19, New York, NY,
USA, Oct. 2019, pp. 808.
doi:10.18429/JACoW­ICALEPCS2019­TUCPR03

[2] M. Schenk et al., “Machine learning & optimisation in
particle accelerator operation for CERN”,
https://indico.cern.ch/event/1145124/contrib
utions/4948834/, 2022.

[3] P. J. Elson, C. Baldi, and I. Sinkarenko, “Introducing Python
as a Supported Language for Accelerator Controls at
CERN”, in Proc. ICALEPCS'21, Shanghai, China,
Oct. 2021, pp. 236-241.
doi:10.18429/JACoW­ICALEPCS2021­MOPV040

[4] P. J. Elson and I. Sinkarenko, “The Python package
repository accelerating software development at CERN,” in
Conf. Europython 2023, Prague, Czechia, Jul. 2023.

[5] Group of source code projects for the simple-repository,
https://github.com/simple­repository/.

[6] PEP 503 – Simple Repository API,
https://peps.python.org/pep­0503/

[7] PEP 691 – JSON-based Simple API for Python Package
Indexes, https://peps.python.org/pep­0691/

[8] PEP 658 – Serve Distribution Metadata in the Simple
Repository API,
https://peps.python.org/pep­0658/

[9] Sonatype Nexus Repository product home,
https://www.sonatype.com/products/sonatype­
nexus­repository/

[10] JFrog Artifactory product home,
https://jfrog.com/artifactory/

[11] Devpi source code,
https://github.com/devpi/devpi/.

[12] PEP 592 – Adding “Yank” Support to the Simple API,
https://peps.python.org/pep­0592/

[13] Dependency Confusion: How I Hacked Into Apple,
Microsoft and Dozens of Other Companies,
https://medium.com/@alex.birsan/dependency­
confusion­4a5d60fec610/

[14] What is a dependency confusion attack?,
https://secureteam.co.uk/2021/02/24/what­is­
a­dependency­confusion­attack/

[15] 3 ways to mitigate risk when using private package feeds,
https://aka.ms/pkg­sec­wp.

[16] PEP 708 – Extending the Repository API to Mitigate
Dependency Confusion Attacks,
https://peps.python.org/pep­0708/.

[17] P. Charrue et al., “Role-Based Access Control for the
Accelerator Control System at CERN”, in Proc.
ICALEPCS'07, Oak Ridge, TN, USA, Oct. 2007, paper
TPPA04, pp. 90-92.

[18] A. Corman et al., “CERN’s Identity and Access
Management: A journey to Open Source”, in Proc.
CHEP'19, Adelaide, Australia, Nov. 2019, pp. 03012.
doi:10.1051/epjconf/202024503012

[19] ETag - HTTP header explained,
https://http.dev/etag

[20] PEP 241 – Metadata for Python Software Packages,
https://peps.python.org/pep­0241/

[21] B. Copy et al., “Protecting Your Controls Infrastructure
Supply Chain”, presented at ICALEPCS'23, Cape Town,
South Africa, Oct. 2019, paper MO4BCO03, this
conference.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP067

Software

Software Architecture & Technology Evolution

THPDP067

1493

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

