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Abstract

The software engineering of process control system for
CERN cryogenic installations is based on an automatic code
production methodology and continuous integration prac-
tice. This solution was initially developed for the LHC
Accelerator applications, then adapted to LHC Detectors,
test facilities and non-LHC cryogenic facilities. Over the
years, this approach allowed the successful implementation
of many control system upgrades, as well as the development
of new applications, while improving quality assurance and
minimizing manpower resources. The overall complexity
of automatic software production chains, their challenging
maintenance, deviation between software production meth-
ods for different cryogenic domains and frequent evolution
of CERN frameworks led to the system’s complete review.
A new unified software production system was designed
for all cryogenic domains and industrial technologies used.
All previously employed frameworks, tools, libraries, code
templates were classified, homogenized and implemented as
common submodules, while projects specific configuration
were grouped in custom application files. This publication
presents the new unified software production solution, bene-
fits from shared methodology between different cryogenics
domains, as well as a summary of two years of experience
with several cryogenic applications from different PLCs tech-
nologies.

INTRODUCTION

Large cryogenic systems are an integral part of CERN’s
accelerator complex and experimental facilities, especially
the Large Hadron Collider (LHC) with its detectors [1]. The
24h a day continuous cryogenic operation during the physics
campaign is mandatory to the collider’s stable beam oper-
ation. As any large and complex technological system, the
cryogenic installations process control programs running on
an industrial control PLC must be as robust and error-free as
possible. At CERN, the design and the development of the
process control software is performed through the CERN
UNICOS framework [2], which defines a set of conceptual
objects such as valves, heaters, 10s, alarms, PID controllers,
etc. Instead of writing PLC code manually, the UCPC (UNI-
COS Continuous Process Control) code generator creates
the code based on a specification file and Python templates.
For several years, CERN has developed various solutions to
help with the whole lifecycle of a cryogenic process control
system [3]. Nowadays, CERN’s systematic use of version
control (with git) and continuous integration (CI) in the en-
gineering workflow has significantly reduced the necessary
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time (from months to weeks) dedicated to develop, test and
deploy a new application or an upgrade. This has allowed the
production of quality and highly reliable cryogenic control
and electrical systems [4].

CERN CRYO CI SYSTEM HISTORY

The first control system using continuous integration was
the 18 PLCs LHC Cryogenic Tunnel Applications, followed
by cryogenic magnet test benches using the Siemens PLCs
technology [3]. Additionally, a database-oriented informa-
tion system was chosen for the LHC tunnel Cryogenic pro-
cess control in the project’s early development [5]. This
choice has enabled the successful use of the continuous in-
tegration system toward a higher automatization level. It
allowed to improve development speed and reduce the time
in feedback loops. After a successful use of the CI in these
two cases, it was progressively rolled out to all cryogenic
process control systems at CERN. This includes LHC Detec-
tors ATLAS and CMS [6] which are controlled by Schnei-
der PLCs technology. The last category consists of several
non-LHC and test facilities installations that use a mix of
Siemens and Schneider PLCs. Each of these domains had
their own special requirements that lead to the development
of slightly different CI solutions (cf. Fig. 1). After some
time, this became very hard to maintain and the system had
to be redesigned.
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Figure 1: Evolution of CI systems.

Software

Software Best Practices



19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Table 1: Size of Our Cryogenic Installations

#of PLCs #of I/Os
LHC Tunnel 18 55000
LHC Detectors 12 10000
non-LHC 70 28000

CI System Design Principles

The CI system(s) developed presented some limitations
(e.g. being heavily application-focused) and did not scale
effectively. The challenge to maintain more than a hundred
applications (see Table 1 for details) with limited team forced
the need for an improved continuous integration system,
more efficient and multi PLC technology. Based on the
return of experiences with the first version, we were able to
point out weaknesses and address them. The key lessons
learned are as follows:

* AVOID GROUPING of applications: non-LHC appli-
cations were grouped into a single git project and orga-
nized into branches. As these projects were relatively
independent, this resulted in a large repository that
slowed down operations such as git checkout and clone,
with no real benefits.

* SHARE common parts: Although each application
is unique, they often share a common structure and a
significant amount of common files (e.g. the CI con-
figuration). When one of the common files had to be
modified/improved/fixed, it was done directly in the
project, causing a slow but certain divergence of this
shared part. Eventually, no one could ascertain the
correct version or why differences existed.

e MINIMIZE rule variations: Many applications were
considered specific, justifying slight variations in how
they were approached (e.g. the 18 LHC-tunnel applica-
tions), bringing additional complexity. However, after
due consideration, these specificities could be accom-
modated in a unique, consistent approach to project
construction.

NEW STRUCTURE CI SYSTEM
Git Repository Structure

The existing continuous integration framework was com-
pletely revised, redesigned and the following new structure
was proposed (Fig. 2). Now every application has its own
git repository separated into three main parts:

e CUSTOM: Contains all project-specific data, this is
the “’real” content of the git repository.

e COMMON: Contains links to git submodules (see next
section).

» TEMP: Not present in the repository itself, contains
build artifacts from the GitLab® CL
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Figure 2: Git repositories structure.

Each project’s custom part contains:

¢ A hardware configuration, a minimalistic PLC project
containing only the CPU (with the IP address) with
configured additional hardware used in the project.

» Data required by the UCPC code generator to create

the logic files. This includes configuration files, the :

specification file and Python templates.

« Static sources and libraries specific for this project that
are imported as-is during the build stage.

 Additional data not required for the build but neverthe-
less required to form a logically complete project.

The distinction between static sources and libraries is
subtle. In the Siemens environment, source files are com-
piled into blocks, which collectively constitute the program.
While sources can exist independently of the project, blocks
cannot. Libraries in this context refer to specialized projects
that encompass blocks imported during the build process.

In contrast, in the Schneider environment, there is more
flexibility in importing and exporting any data as XML files.
Here, static sources typically denote files integrated into the
master task, while libraries often contain data and function
block (FB) types, or variables. It’s crucial to arrange static
files with care because their importation order also dictates
their execution sequence within the master task.
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Use of Submodules

The key feature of this improved CI system is its intensive
utilization of submodules. A significant effort was invested
in identifying common parts in all our applications and ex-
tracting them as git submodules. This approach not only
reduces code duplication but also standardizes the execution
of certain functions in our software, such as communication,
alarm handling, and bit manipulation, among others. Fur-
thermore, in the event of a bug discovery or the requirement
for an essential update, these changes are implemented in a
separate git repository, ensuring that every project depend-
ing on it receives the necessary updates. The custom part
of any application is made minimalistic (one specification
file, a couple of object-specific templates and a few static
sources), thus simplifying future maintenance.

Among the submodules, the most critical one is the gen-
erator submodule. For nearly all projects, 90% of the code
templates are identical, with most of them originating di-
rectly from the UCPC tool. These templates are housed in a
single repository (per PLC technology) and are linked by ev-
ery project. During this process, the common templates are
merged with the custom ones present in the project reposi-
tory creating a comprehensive generator that can be executed.
The generator submodule makes heavy use of git branches.
Applications use different UCPC versions, defined by what
version was the most recent (or stable) at the time of com-
missioning. To maintain a single generator submodule (for
one PLC technology), the different versions are separated in
branches. In case one application has to be redeployed with
anew UCPC version, it suffices in the easiest case to change
the submodule reference.

Additionally, there is an optional submodule dedicated
to shared templates. In case where a group of projects ex-
hibit significant similarity (such as the SM18 horizontal test
benches), they share a lot of project-specific generator tem-
plates. Instead of duplicating these templates within each
project’s repository, an additional middle layer is created be-
tween the project’s custom and common part. These projects
then source their templates from three different places (com-
mon generator, shared template’s repository, custom tem-
plates in the project itself) which are combined before run-
ning the generator. This system also facilitates making logic
changes that should apply to all subprojects; only one repos-
itory needs to be modified in such cases. Currently, it is
used by the LHC tunnel projects and superconducting test
benches.

Another submodule contains libraries common for a PLC
technology. They consist of either standard functionality
such as communication or custom-made implementations
of functions used in most of our projects such as bit manipu-
lation. During build, these are imported together with the
custom libraries present in the repository.

The CI system itself is also a submodule, allowing to
detach the CI development from the application development.
The CERN cryo CI system is implemented in Python3®
(besides yaml files required by the GitLab® CI) as opposed to
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GNU Make. Using a fully-featured programming language
allows to better orchestrate all the complexity around the git
submodules, collecting files, etc.

NEW CI SYSTEM FEATURES

Spec Version Control

The input specification utilized by the UCPC code genera-
tor is an Excel spreadsheet. This choice offers advantages in
terms of working with tabular data, allowing easy mass-edits,
filtering and formatting as well as easier navigation.

However, there is a drawback to using Excel: it does not
harmonize well with version control systems like Git due to
it fundamentally being a binary format.

Since the specification undergoes frequent edits, tracking
changes, especially when attempting to trace them backward
using Git’s blame feature, becomes an arduous task. To
address this issue, the repository contains a set of JSON
files, representing the different CERN UNICOS objects,
systematically updated with every change to the specification.
This approach allows us to track changes effectively on these
files. It’s worth noting that these JSON files are not utilized
in the program generation itself, instead they serve as a static
snapshot of the current specification in the commit action
in text format. This enables us to leverage standard Git
tracking features and mitigate the version control challenges
associated with the Excel-based specification.

Comparisons of Code Version: Quality Assurance
Tests

Besides the typical generation and build tasks, the
pipelines also contain verification test jobs. These tests play
a vital role in enhancing overall quality assurance by identi-
fying and rectifying common yet significant errors, such as
incorrectly configured IP addresses, missing spare objects
in the specification, or unused code in the program. This is
very helpful during an installation upgrade as it forces us to
deal with accumulated legacy code and ensure the project is
in a pristine state before deploying the upgrade.

Furthermore, two comparison jobs were implemented.
One of these jobs compares the currently built project to
the previous build, while the other compares it to the ver-
sion currently running in production. These comparisons
serve as double-check mechanism for changes introduced in
code. Any disparities detected are meticulously processed
to eliminate non-essential information like timestamps and
specification versions, presenting only the pertinent alter-
ations. Automatic comparison to production environment
also helps in reverse-engineering tasks. Often, when modi-
fications have to be done during the operation of the instal-
lation, these changes are initially performed manually with
the PLC software connected to the production PLC. Sub-
sequently, these changes are backported to the Git project.
Having an automatic comparison to the production environ-
ment aids in this transition, ensuring that the operational
adjustments are accurately reflected in the version-controlled
codebase.
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Figure 3: CI structure.

Mirror PLC Validation Test Platform

Additionally, subpipeline scripts offer the capability to
automatically build and deploy a validation testing platform
known as “mirror PLCs”. This platform serves both devel-
opers and cryogenic operators. Developers use it to check
the correctness of their implementations, while operators
employ it either to review the correctness and relevance of
the planned process control or for training purposes.

The mirror PLCs platform is composed of the same PLC
CPU and a supervision SCADA system installed on an
OpenStack® virtual machine (VM). The pipeline automati-
cally adjusts the IP addresses, builds the project and deploys
both the program to the PLC and the corresponding commu-
nication configuration to the SCADA. During the generation
phase, an additional script is executed, providing basic sim-
ulation features, such as simulating circuit breaker status
or copying the command of the actuator to the feedback.
This approach enables the operator to easily connect to the
SCADA VM and start testing. While the platform doesn’t
simulate the actual process dynamics (e.g., pressure or tem-
perature evolution), the behaviour of actuators like valves
and heaters mirrors that of the real plant. Previously, this
setup demanded a manual update of the generator, download-
ing build artifacts, connecting the mirror PLC, SCADA, and
executing program and communication uploads manually.

NEW CI SYSTEM INFRASTRUCTURE
Delegation of Responsibility

A comprehensive consolidation initiative has been im-
plemented to streamline our processes and minimize the
complexity of maintaining additional infrastructure. Here
are the key changes and improvements (see Fig. 3):

1. CI Build System Transition: The custom Jenkins build
system was swapped in favor of the CERN-provided GitLab
CIL. Instead of custom runners in OpenStack®, most jobs run
in Docker containers on the CERN-provided shared runners’
infrastructure.

Software
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2. Docker Images for CI: Our CI pipeline requires three
distinct Docker images: one with the UCPC generator for
the generation job, one with an Oracle client to build the
database-backed specification file for tunnel applications [5]
and one minimalistic with just Python3® for all other jobs.

3. Outsourcing CLI Tool Development: The responsi-
bility for developing and maintaining Command Line Inter-
face (CLI) tools required to control the various PLC "IDEs”
(Schneider Control Expert®, Siemens Simatic Step7® and
Siemens TIA Portal®) are now under the responsibility of
the CERN central control group at CERN. We do no longer
maintain our own versions of these tools, the provided com-
piled binaries are automatically pulled in our pipelines.

GitLab Runners

Maintaining custom runners is however still required for
certain tasks, primarily Microsoft Windows® runners for
PLC build jobs. This necessity arises from the fact that
Siemens and Schneider software tools are not compatible
with Linux environments.

The runners’ architecture is similar to [3], employing Cyg-
win to provide a Linux-like environment for the execution
of the CI and calls .exe CLI programs to communicate with
the build tool.

These runners are registered as group runners in GitLab
and are differentiated by tags according to what PLC soft-
ware it has installed (Control Expert®, Simatic Step7®, TIA
Portal®) so that the correct one is picked for the build job of
an application. At present, we utilize the Windows Server
2019® version on most runners due to its perceived stability
and reliability concerning automatic updates.

Additionally, the mirror SCADA VMs are registered as
GitLab runners so that a new mirror build can be directly
deployed to them. In this setup, each project specifies in its
configuration which mirror SCADA environment it should
be deployed to. GitLab then dispatches the deployment job
based on runner tags, ensuring that the build is deployed to
the mirror SCADA system associated with the project.
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CERN CI REALIZED PROJECTS

This new CI was used in the two extensive upgrades of
cryogenic installations:

» HIE-ISOLDE: The process control logic of this sys-
tem was outdated and unnecessarily complex. We took
profit of the installation shutdown to completely re-
implement it. After receiving the logic specification,
implementation and testing took three weeks, instead
of the previous months. The automated mirror gener-
ation feature was crucial during the development of
this application and was used several times. It allowed
iterative progress between the software developer and
the operator, with a systematic validation of new fea-
ture of the cryogenics process along with the software
coding. After deployment, the installation successfully
operated according to specification.

* ATLAS Argon [7]: After 12 years, the control sys-
tem of a critical part of the ATLAS detector had to be
upgraded. This project spanning over multiple years
required a complete logic review and extensive testing.
The CI helped on focusing manpower on the design
and testing, implementation was only a minor part of
the effort. The feedback loop between bug discovery
and the patched version being deployed for testing was
shortened and almost automatic. Additionally, test jobs
helped in putting the project in a fresh-like state before
future improvement will be made.

e SM18 CFBs: The SM18 Cryogenic Feed Boxes (CFB)
are a complex proximity cryogenic system dedicated to
test of superconducting magnet. Some of the CFB test
benches underwent significant mechanical modification
to allow for the test of the new High Luminosity LHC
magnets. The control system had to be upgraded to
cope with those new requirements. The use of submod-
ule allowed to guarantee fast and consistent updates of
the modified benches optimizing our manpower alloca-
tion.

CONCLUSION

CERN’s cryogenic process control system extensively
uses continuous integration and automatic code generation.
Our unified software production solution applies a shared
methodology, enabling a robust and automatized global pro-
cess control system generation from design to operation.
The reorganization of our git repositories and the leveraging
of submodules significantly improved code reuse and de-
sign consistency. By transitioning to GitLab CI and Docker,
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the need for custom runners was reduced. Critical software
tools, including the UCPC code generator and PLC CLlIs,
are now maintained by the CERN central control group,
alleviating our operational concerns. Moreover, with the
integration of mirror SCADA system into our CI ecosystem,
it is possible to automatically deploy mirror builds, which
streamlines validation and testing. The addition of quality
assurance tests into our CI pipeline also limits the risk of
errors and deployment failures. These results highlight our
commitment to finding smarter and more efficient ways to
reach our scientific goals.
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