©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-THPDPO61

PYTHON EXPERT APPLICATIONS FOR LARGE BEAM
INSTRUMENTATION SYSTEMS AT CERN

J. Martinez Samblas*, E. Calvo Giraldo, M. Gonzalez-Berges, M. Krupa
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Abstract

In recent years, beam diagnostics systems with increas-
ingly large numbers of monitors, and systems handling vast
amounts of data have been deployed at CERN. Their regu-

° lar operation and maintenance poses a significant challenge.

These systems have to run 24/7 when the accelerators are
operating and the quality of the data they produce has to be
guaranteed. This paper presents our experience developing
applications in Python which are used to assure the readi-
ness and availability of these large systems. The paper will
first give a brief introduction to the different functionalities
required, before presenting the chosen architectural design.
Although the applications work mostly with online data,
logged data is also used in some cases. For the implementa-
tion, standard Python libraries (e.g. PyQt, pandas, NumPy)
have been used, and given the demanding performance re-
quirements of these applications, several optimisations have
had to be introduced. Feedback from users, collected during
the first year’s run after CERN’s Long Shutdown period
and the 2023 LHC commissioning, will also be presented.
Finally, several ideas for future work will be described.

INTRODUCTION

The LHC is renowned for generating substantial amounts
of data through particle collisions. However, it is often
overlooked that a significant stream of data is generated by
the numerous Beam Instrumentation (BI) systems deployed
to monitor, control, and ensure the smooth operation of the
accelerators.

This paper primarily focuses on two BI systems: the Dia-
mond Beam Loss Monitors (Diamond BLMs) [1] and the
Beam Position Monitors (BPMs) [2]. These large systems
present serious challenges due to their extensive data pro-
duction. On the one hand, despite their limited number (17
across all accelerators), Diamond BLMs can buffer millions
of samples per cycle. Conversely, while BPMs individually
produce less data, their vast quantity (over 1000 deployed in
the LHC) contributes to a massive overall data volume.

In response to the lack of software solutions dedicated
to addressing these highly demanding systems, a suite of
Python applications has been developed under a set of spe-
cific mandates. Firstly, the programs must provide the flexi-
bility to monitor all devices through a unified, user-friendly
interface. Speed is also essential, not just in terms of data
processing and real-time efficiency, but also in expediting
system processes such as commissioning, diagnostics, and

#

javier.martinez.samblas @cern.ch

THPDPO61
1460

fine-tuning, which can otherwise become tedious and time-
consuming. Lastly, adopting a data-driven approach is im-
perative to ease maintenance and ensure scalability in the
future.

LARGE BEAM INSTRUMENTATION
SYSTEMS

Diamond BLM System

The LHC and SPS, along with the SPS transfer lines,
are equipped with 17 Diamond BLMs. These detectors,
made of diamond crystals with gold electrodes polarised at
500 V, are strategically positioned to offer a time resolution
of 1.53 nanoseconds, enabling precise bunch-by-bunch loss
measurements. Acquired signals are digitised at 650 MSPS,
with the system supporting five parallel acquisition modes
logging at 1 Hz and an on-demand mode for time windows
of several milliseconds.

Diamond BLMs play a crucial role in analysing beam
transfer efficiency and kicker time alignment at injection
and extraction lines. In betatron collimation regions, they
monitor losses throughout the entire beam cycle, which are
generally associated with physical phenomena such as beam-
beam interactions, electron cloud effects, and tune drifts,
among others.

LHC BPM System

To guarantee the safe and efficient operation of the accel-
erator, the LHC is armed with over 1000 BPMs distributed
throughout the beam line for continuous and precise mea-
surements of the beam’s transverse position within the vac-
uum chamber. BPMs are electromagnetic sensors that non-
destructively couple to the electromagnetic field generated
by the passing beam. The analogue signals produced by
these devices are first processed via analogue front-end elec-
tronics located within the LHC tunnel. Subsequently, this
processed output is transmitted to the surface-level back-end
electronics, where the beam position information is digitised.

Data from each BPM is acquired independently through
a dedicated platform, resulting in a large network of devices
streaming data at 50 Hz. To mitigate the cost and complexity
of the computing infrastructure, nearby BPM acquisition
boards are controlled by a shared CPU. This arrangement
effectively reduces the number of logical devices recognised
by the control infrastructure to 70.

The BPM system is crucial for the LHC operation. Be-
sides continuously streaming the average beam position data,
the system offers several other functionalities. For instance,
it can capture positions calculated for a selected subset of
LHC bunches over a specified number of consecutive turns.

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

The measurements from the LHC’s BPMs are frequently
used to optimise the accelerator performance and diagnose
anomalies.

ONLINE APPLICATIONS

Online applications are specifically designed to handle
real-time data, streaming directly from devices via the Front-
End Software Architecture (FESA) [3]; FESA is a CERN-
developed framework that provides a consistent approach to
the design and implementation of software for equipment
controllers. Online applications serve during both commis-
sioning and operational periods, and they have the capacity
to monitor and control all devices simultaneously. While
designing this software, substantial emphasis was placed
on displaying the overall status of the system at a glance,
enabling swift and easy intervention in case of issues.

Diamond BLM Expert Application

The main view of the Diamond BLM application presents
a summary of all devices, offering a snapshot of the cur-
rently running modes along with the most important general
information readouts. In addition to the summary views,
users can select individual devices to visualise raw buffer
plots over time, including turn flags. If a more detailed,
bunch-by-bunch visualisation is required, a zoomable extra
view is available for in-depth analysis.

Figure 1: Diamond BLM Capture Window. Left plots depict
the losses for both raw buffers, while the right ones display
their corresponding FFTs. Turn flags and FFT harmonics
are shown in yellow.

As illustrated in Fig. 1, frequency spectrums are displayed
alongside the raw buffers. Fast Fourier Transforms (FFTs)
are calculated independently on Unified Controls Acquisi-
tion and Processing (UCAP) [4] nodes, facilitating the dis-
tribution of computational resources; UCAP is a framework
designed to enhance the effectiveness of the data processing
pipeline within the CERN Accelerator Control System. It
is proficient in handling the common “Acquisition - Trans-
formation - Publishing” scenarios. Beyond mere FFT cal-
culations, the applied methodology also incorporates peak
detection, the removal of noisy harmonics inherent to the
system (e.g. 25 MHz), and the integration of spectrums.

Lastly, the application embeds a comprehensive panel
that automates the phase-in of the devices. A common chal-

Software

Software Architecture & Technology Evolution

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-THPDPO61

lenge with these systems is the potential desynchronisation
between the losses signal and the bunch and turn clocks,
often due to prolonged cable lengths and processing chain
complexity. The implemented algorithm addresses this by
adjusting the phase-in parameters, seeking to align the Beam
Current Transformer (BCT) pattern with the signal peaks of
the first bunch.

LHC BPM Expert Application

The LHC BPM application serves as the central compo-
nent of the newly revamped Python ecosystem, which also
includes a toolkit of offline applications (refer to the subsec-
tions "LHC BPM Capture Analysis Tool” and "LHC BPM
Auxiliary Tools” for more details). This master application
effectively retrieves, processes, and presents the extensive
data generated by the numerous BPMs at the LHC.

Figure 2: Screenshot of the LHC BPM Expert Application.
The tree view on the left represents the list of all FESA de-
vices, while the main panel on the right shows the summary
view of all BPMs in the LHC.

At the summary level (Fig. 2), the application displays the
operational status of all active devices, allows customisable
groupings by criteria (e.g. by location in the accelerator
ring, by BPM type), and facilitates the execution of multi-
commands such as concurrent multi-SETs across different
Front-End Controllers (FECs) and BPMs. The capability to
simultaneously control multiple devices significantly boosts
efficiency, leading to considerable time savings in the overall
system adjustments and monitoring process.

At the individual BPM level, the application provides
real-time visualisations of position data, offering a detailed
perspective on each device’s performance, along with tables
presenting all FESA properties. Moreover, users can access
a panel displaying the history of the serial numbers for in-
stalled hardware. This allows to easily track past changes in
the system, such as the replacement of malfunctioning BPM
electronics.

OFFLINE APPLICATIONS

In addition to online applications, offline applications are
key for conducting thorough, post-operational analyses of
logged data. Offline applications typically read data stored
in different formats such as the Hierarchical Data Format
V5 (HDFS) [5] or Self-Describing Data Sets (SDDS) [6], as

THPDPO61
1461

©2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

icence (© 2023). Any distribution of this work must maintain attribution to the author(s) title of the work, publisher, and DOI

O.

>-

©=%d Content from this work may be used under the terms of the B

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

well as data logged in NXCALS [7], CERN’s Spark-based
logging system.
LHC BPM Capture Analysis Tool

The LHC BPM Capture Analysis Tool (Fig. 3) is designed
for analysing and exploring capture data coming from SDDS

> files organised per LHC fill. This tool features a file explorer

that supports filtering based on criteria such as date, number
of turns, and number of bunches, among others. It offers an
interface for displaying the data in various forms, enabling
x-axis changes to visualise the data per BPM, turn, or bunch

- (useful for evaluating bunch trains), along with a set of op-

tions to inspect the FFTs. Additionally, the tool encompasses
a series of outlier detection algorithms employed to identify
anomalous or malfunctioning BPMs. Currently, three such
anomaly detection algorithms are incorporated:

* Spike detection: This method attempts to identify un-
expected peaks in the position data by calculating the
Z-Score and checking for points that exceed a certain
threshold.

* N-zeros: Essentially, any BPMs showing all-zeros, or
a large range of zeros, in any of their planes indicate
potentially corrupted data.

* Tune comparison: This approach begins by calculat-
ing the FFTs, after DC offset removal. The highest peak
is then identified using Jacobsen [8] interpolation for
minute precision. This peak represents the tune of the
beam and should be consistent for all BPMs within the
same plane. Consequently, any BPM with a differing
tune is flagged as an outlier.

Figure 4 depicts a typical scenario for a malfunctioning
BPM. As demonstrated in the image, the FFT exhibits spec-
tral leakage, highlighted by a peak at the Nyquist frequency.
This common scenario often suggests that the FFT might
not have been computed accurately, probably due to some
form of clipping or distortion in the source data. Upon exam-
ination of the horizontal positions, it becomes apparent that

Figure 3: Screenshot of the LHC BPM Capture Analysis
Tool. Left panel displays the file explorer and selector. Plots
in the right window represent the horizontal and vertical
position data for all BPMs in a file containing 6600 turns.

= THPDPOG1
1462

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-THPDPO61

the acquisition of the signal’s negative values is largely in-
correct. This anomalous BPM can be identified using either
the ”N-zeros” or "Tune comparison” algorithms.

LHC BPM Auxiliary Tools

Apart from the aforementioned applications, the LHC
BPM Python ecosystem also includes a set of auxiliary
tools: the FIP Expert GUI and the Memory Check Tool.
The FIP Expert GUI is principally used to manage Factory
Instrumentation Protocol (FIP) devices, which orchestrate
various control operations, such as the calibration of the
BPMs. Alternatively, the Memory Check Tool performs
memory integrity checks for FECs, identifying failing Logi-
cal Unit Numbers (LUNSs), bits, and their associated memory
addresses. Initiating memory checks is made simpler by pre-
defined test templates for both horizontal and vertical planes.

Data Analysis and Visualisation Tool (DAVIT)

In some scenarios, such as those involving certain Dia-
mond BLM configurations that exceed FESA’s throughput
capabilities, online data processing and visualisation be-
come impractical. In these instances, hierarchical formats
like HDFS, which are specifically designed to handle big
data, offer an optimal solution due to their comprehensive
metadata features that aid in data organisation.

The Data Analysis and Visualisation Tool (DAVIT) is a
versatile program designed to address this exact challenge,
enabling users to create comprehensive visualisations in a
variety of formats, including tables, scatter plots, and single
or multi-axis line plots. Leveraging the power of hierarchical
structuring, the tool offers users the ability to filter files based
on metadata values, allowing for the creation of custom sets
of groups and datasets.

select BPMs | | fillNumber: 9044 beamNumber.

B1 acqstamp: 08/07/2023 02:54:35 nbOfCapTurns:

6600 nbOfCapBunches: 1

X-axis |Turns Fixed selection |Bunch - | [BUNCH 494 ~ Mode: NORMAL - All-zeros: @ Hover

Figure 4: Anomaly Detection Example. The bottom im-
ages illustrate the horizontal and vertical positions for
BPM.13L6.B1, while the top images display their corre-
sponding FFTs.

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Each resulting group or dataset is treated as a pandas [9]
dataframe. This approach simplifies data manipulation, per-
mitting the combination and merging of multiple datasets,
as well as supporting built-in operations like matrix transpo-
sition and array slicing. It also augments the modularity of
the visualisation components, making them independent and
reusable, as they only need to handle input dataframes re-
gardless of the data’s original source or dimensions. Besides,
the application has been extended to fetch data from NX-
CALS and is expected to handle data from the PostMortem
system in future updates.

IMPLEMENTATION

PyQt5 has been selected as the main library for building
the expert applications. As a Python binding of the cross-
platform toolkit Qt, PyQt is widely used in the industry
for large-scale applications, thanks to its mature and stable
environment. Moreover, it is gradually becoming a standard
at CERN’s accelerator teams, reinforcing its suitability for
the task at hand.

PyQt is both modular and easily controllable, offering
extensive flexibility for application development. It incor-
porates the model/view design pattern, which separates the
GUT’s data (model) from its visual representation (view),
enhancing coding efficiency. Unfortunately, PyQt’s default
models are not devised for managing large datasets, so cus-
tom models and widgets had to be developed to properly
handle the abundant data produced by the BI systems. No-
tably among these is a tailored table that utilises pandas
dataframes as the primary source for its model. It incorpo-
rates numerous practical features such as filtering, regular
expression searching, natural sorting, and type conversions
(e.g. decimal to binary). As shown in Table 1, this cus-
tom table substantially outperforms the default PyQt table,
offering faster loading times and reduced memory consump-
tion. Specifically, the pandas table exhibits a more linear
increase in loading times and consumes approximately x4
less memory.

Table 1: Performance comparison between the default PyQt
table (left) and the implemented pandas table (right). Size
refers to the number of elements in a table containing only
strings.

Size Loading Time (s) Memory (MB)
10,000 0.03/0.02 3.87/1.02
100,000 0.37/0.03 39.96/10.97
1,000,000 5.50/0.14 411.06/104.93
10,000,000 50.76 / 1.53 4033.87 / 1004.49

As for graphics, PyQtGraph was chosen as the main li-
brary for generating plots due to its inherent capability of
providing rapid and interactive data visualisations. It is
particularly efficient when dealing with medium-sized data
curves, accommodating up to 1 million samples adequately.
However, when handling larger datasets, especially those

Software

Software Architecture & Technology Evolution

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-THPDPO61

exceeding 10 million samples such as the data encountered
in the Diamond BLMs, its built-in downsampling algorithm
begins to lag the applications, causing display freezes and
rendering them unusable. Therefore, a custom downsam-
pling algorithm had to be implemented to minimise any
performance and freezing issues; Given a signal y composed
of n data points, the resulting signal y" of N downsampled
points can be computed using the following major steps:

1. Downsampling factor: The algorithm starts by deter-
mining the downsampling factor, denoted as d. This
is the number of data points to be combined into one
downsampled point. Mathematically, it can be written

as:))
N A
a= |25

where i and i, are the starting and ending indices of the
plot range, respectively, and N represents the desired
maximum number of samples.

6]

2. Regularisation: Next, both the range of indices and
the downsampling factor are regularised to multiples
of a power of 2. This ensures that the same data points
are always included when the plot range or zoom level
changes slightly. It can be expressed as:

d = oMo, @)1 2)
iy | %] -d 3)
i = {%} -d 4)

where [log, (d)] is the bit length of the initial down-
sampling factor.

3. Envelope preservation: The actual downsampling pro-
cess begins by dividing the data into chunks of size d.
For each chunk, the algorithm computes the minimum
and maximum y values. These minima and maxima
are then interleaved, meaning that the minimum and
maximum of each chunk are placed sequentially. This
process forms the downsampled signal y’, preserving
the envelope of the original data while reducing the
number of data points.

4. Caching: To further improve performance, the algo-
rithm precomputes the downsampled data for various
downsampling factors and stores them in a cache. This
allows the downsampling step to quickly retrieve the
downsampled data from the cache when the zoom level
changes, rather than having to fully recompute it each
time.

Finally, it is important to emphasise the significance of
multi-threading in the implementation of the applications.
For tasks such as data synchronisation, the QThread class
from PyQt was preferred, primarily because of its native
integration with Qt’s event loop and signal-slot mechanism.

THPDPO61
1463

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Multi-threading is also applied within the Java API for Pa-
rameter Control (JAPC) [10] and its Python binding, Py-
JAPC, which is the library employed to fetch the data from
the devices.

COMMISSIONING AND OPERATION
EXPERIENCE

The Diamond BLM online application has been a very
valuable tool during the commissioning phases following the
winter shutdown periods of both the LHC and SPS. Given
that detectors are situated across different machines and
serve various use cases, they require a multitude of con-
figuration parameters that are inherently error-prone when
manipulated manually. Thankfully, the overview panel sim-
plifies the configuration process by swiftly identifying and
rectifying malfunctioning detectors. Moreover, the ability
to locate and group detectors based on either their names or
the machines they are installed in is particularly useful, as it
allows for the simultaneous execution of custom commands
across multiple detectors. The tool is also regularly used
during the year to ensure that all continuous modes are active
and disseminating data, a task that previously necessitated
the opening and monitoring of different interface windows.

Additionally, bunch-by-bunch losses demand fine-tuned
time adjustments between the beam synchronous clocks and
the detector data stream to compensate for cable delays. This
was previously carried out manually by a firmware expert,
making it both time-consuming and relatively error-prone.
The incorporation of this functionality into the application
has streamlined the process, making it more rapid and reli-
able.

Regarding offline processing, DAVIT has eased the explo-
ration of the extensive on-demand Diamond BLM capture
files generated during custom Machine Development (MD)
studies. This has led to considerable savings in post-analysis
time.

As for the LHC BPM application, the newly developed
expert software ecosystem very quickly proved to be funda-
mental for validating the system after maintenance activities,
identifying broken channels, and diagnosing complex per-
formance issues. The tools provide experts with not only a
broad overview of the entire BPM system, but also the ability
to examine critical low-level details of individual channels
within a user-friendly interface. The many built-in data anal-
ysis features enable most problems to be studied directly
from the GUI. Furthermore, the software simplifies the ex-
port of raw data to all standard data formats, facilitating
exhaustive offline analysis.

FUTURE WORK

Despite operating within a largely generic environment,
applications will entail regular maintenance to keep com-
patibility with FESA changes as well as updates to other
libraries. Moreover, these applications are in a state of per-
petual evolution, significantly driven by user needs across
the various commissioning and operation periods.

THPDPOGI
1464

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2023-THPDPO61

A prime area for enhancement lies within the LHC BPM
Capture Analysis Tool, which is scheduled to be upgraded
with two new anomaly detection algorithms based on Iso-
lation Forest and SVD dominance analysis. DAVIT might
also be expanded to handle new file types (e.g. Parquet) and
data sources (e.g. PostMortem).

CONCLUSIONS

Managing Beam Instrumentation systems poses a chal-
lenge due to the substantial number of devices and the vast
data volumes they continuously collect. The suite of appli-
cations introduced in this paper successfully addresses this
challenge by delivering rapid overview information, facili-
tating data manipulations, enabling automatic anomaly de-
tection, and providing comprehensive visualisations. Perfor-
mance techniques, such as downsampling and multithread-
ing, have been explored and will be used for future Python
developments in other accelerator systems.

REFERENCES

[1] E.Calvo Giraldo et al., “The Diamond Beam Loss Monitoring
System at CERN LHC and SPS”, in Proc. IBIC’22, Krakéw,
Poland, Sep. 2022, pp. 202-206.
doi:10.18429/JACoW-IBIC2022-TU2C2

E. Calvo-Giraldo et al., “The LHC Orbit and Trajectory Sys-
tem”, in Proc. DIPAC’03, Mainz, Germany, May 2003, pa-
per PTO8, pp. 187-189.

M. Arruat et al., “CERN front-end software architecture for
accelerator controls”, in Proc. ICALEPCS’03, Gyeongju, Ko-
rea, Oct. 2003, pp. 342.

L. Cseppentd and M. Biittner, “UCAP: A Framework for
Accelerator Controls Data Processing @ CERN”, in Proc.
ICALEPCS’21, Shanghai, China, Oct. 2021, pp. 230-235.
doi:10.18429/JACoW-ICALEPCS2021-MOPV0O39

M. Folk, A. Cheng, and K. Yates, “HDFS5: A file format and
I/0 library for high performance computing applications”, in
Proc. of Supercomputing, vol. 99, pp. 5-33.

(2]

(3]

(4]

(5]

[6] M. Borland, “A self-describing file protocol for simulation
integration and shared postprocessors”, in Proc. PAC’95, Dal-
las, TX, United States, May 1995, vol. 4, pp. 2184-2186.

doi:10.1109/PAC.1995.505492

J. Wozniak and C. Roderick, “NXCALS - Architecture and
Challenges of the Next CERN Accelerator Logging Service”,
in Proc. ICALEPCS’19, New York, NY, USA, Oct. 2019, pp.
WEPHA163.
doi:10.18429/]ACoW-ICALEPCS2019-WEPHA163

(7]

[8] E. Jacobsen and P. Kootsookos, “Fast, accurate frequency
estimators [DSP Tips & Tricks]”, in IEEE Signal Processing
Magazine, May 2007, vol. 24, no. 3, pp. 123-125.

doi:10.1109/MSP.2007.361611

[9] W. McKinney, “Data Structures for Statistical Computing in
Python”, in Proc. SCIPY’10, Jun. — Jul. 2010, pp. 56-61.

doi:10.25080/Majora-92b£f1922-00a

V. Rapp and W. Sliwinski, “Controls middleware for FAIR”,
in Proc. PCaPAC’ 14, Karlsruhe, Germany, Oct 2014, pa-
per WCO102, pp. 4-6.

(10]

Software

Software Architecture & Technology Evolution

