== Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO17

A DATA ACQUISITION MIDDLE LAYER SERVER
WITH PYTHON SUPPORT FOR LINAC OPERATION
AND EXPERIMENTS MONITORING AND CONTROL

V. Rybnikov*

Abstract

This paper presents online anomaly detection on low-
level radio frequency (LLRF) cavities running on the
FLASH/XFEL DAQ system. The code is run by a DAQ

= Middle Layer (ML) server, which has online access to all

collected data. The ML server executes a Python 3 script that
runs a pre-trained machine-learning model on every shot
in the FLASH/XFEL machine. We discuss the challenges
associated with real-time anomaly detection due to high
data rates generated by RF cavities and introduce a DAQ
system pipeline and algorithms used for online detection
on arbitrary channels in our control system. The system’s
performance is evaluated using real data from operational
RF cavities. We also focus on the DAQ monitor server’s
features and its implementation.

DAQ DATA ON-LINE ACCESS

The DOOCS [1] based FLASH DAQ [2] system (Fig. 1)
has been in use since 2004. A similar XFEL DAQ [2] system
has been running since 2019. The collected data is provided
not only for the purpose of the LINACs operation but also for
the experiments running on XFEL [3]/FLASH [4] photon
beamlines. To be able to implement online (nearly real-time)
control of the LINACs the data access is provided for Middle
Layer (ML) servers running on the DAQ computers. The
data access is done via Buffer Manager (BM) [5]. The BM
provides ML servers with the synchronized data for every
short in the LINAC.

A DAQ monitor server is a generic ML server that can be
configured according to the user’s requirements. To config-
ure the server one needs two pieces of information:

« a set of DAQ channels which data is to access,

* a path to a Python script for the data processing.

All this information is provided via dedicated server’s
DOOCS properties accessible via the network.

DAQ MONITOR SERVER
IMPLEMENTATION

The DAQ monitor server is implemented as a DOOCS
server. It runs on a DAQ computer and has access (via
BM) to all collected DAQ data. The server can execute a
Python [6] script feeding it with the required DAQ channel
data.

* vladimir.rybnikov @desy.de
TH PDPOT7

1330

, A. Sulc, DESY, Hamburg, Germany

Server Design

The server is written in C++ [7]. It makes use of the
Python/C API [8] (independent on the Python 3 version) to
provide the data exchange between C++ and Python worlds.

Server Configuration

The server configuration with respect to channels to be
read from the DAQ BM is implemented via setting the
server’s property ‘DAQ.REQ’. It accepts XML [9] strings.
The XML string consists of a number of sections correspond-
ing to the number of DAQ channels to read. Every section
contains at least the following information:

¢ the DAQ channel name,
¢ the sub-channel number,
¢ channel sender source (server block name)
 and an event type mask.

All this information is used to perform the correct channel
subscription at the BM.

Any DOOCS server has a configuration file for storing
its property values. In addition, every property of XML
type creates a corresponding text file containing the XML
string content. The DAQ monitor server uses this file to set
the value of the ‘DAQ.REQ’ property during its start-up. It

transfer —> \DAQ St(,)@ ’ dCache

s RAWH \RAW\ ” Petabype

melmory 20-80 TB \Dlsk/Tape space”
ulticast y Disk space —

/ ~10 — 900 MB/s \
Event Builder Dlstrlbutor
\—/

Buffer \ Middle
Manager Layer Server

b\
~20-900 MB/s
\ Fast Collector Slow Collector /

\
FA |= T FAST sLow
CAM Qi
R
v cPCI PC

oy
LINAC or USER EXPERIMENT

~—""
%
Figure 1: FLASH and XFEL DAQ architecture.

DAQ
Server

Software

Data Management

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Table 1: DOOCS Properties Controlling Python Script Exe-
cution

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO17

Table 2: Statistics DOOCS Properties for Python Script
Execution

Name Purpose

PYTHON.USE If not O, then 2 next
properties are considered.
The full path to a python.

A function name in the Python
script defined by PYTHON . SCRIPT

to be called.

PYTHON.SCRIPT
2*PYTHON . FUNCTION

allows it to be configured with the same set of DAQ channels
after a new (re)start-up.

Server Initialization

On getting the XML configuration string the DAQ monitor
server performs the following steps:

* parses the XML string and prepares a list of required
channels

* creates new DOOCS properties dedicated to the re-
quired input channels. The types of properties can be
of all DOOCS types (scalars, arrays, images)

* subscribes to the BM to get the channels

 goes to RUN state for receiving the DAQs data

IN OPERATION

The DAQ monitor server gets the DAQ channel data from
the BM on every shot in the machine (currently 10Hz). The
DOOCS properties dedicated to the input data channels are
updated with the new values. The way the data will be
handled further depends on the Python script. Its execution
is controlled by the 3 server’s properties shown in Table 1.

The function defined by PYTHON.FUNCTION is to be
called by the DAQ monitor server if the Python script is de-
fined by PYTHON . SCRIPT can be executed and PYTHON . USE
is not zero.

The function is called with the parameters prepared by the
server as a list of dictionaries containing the DAQ channel
data.

The execution of the Python function is to be canceled for
the next machine shot if the function call for the previous data
is still not complete. It means that the time execution exceeds
the time between two consecutive shots in the machine (in
our case 100 ms). The statistics on processed and lost events
as well as time processing are given by the DAQ monitor
properties in Table 2.

The results from the Python script are returned as a list of
dictionaries. The dictionaries can be divided into 2 groups:
results and parameters.

Results from the Python Script

The results have to have at least the following
keys: {’0UT’ : ’SOMENAME output description’,

Software

Data Management

Name

BM.EVN_TOTAL

Purpose

Total number of data shorts
seen by the server.
The number of data shorts
processed by the scripts.
Python script execution time history.

EVENTS.PROC

PYTHON.TIME

>TYPE’:’type’, ’DATA’: data}. The keyword OUT is
a command to the DAQ monitor server to create a DOOCS
property named SOMENAME with the type of type and with
the value of data. There can be some additional keys for
some complex data types (e.g. images). All supported data
types are listed in the Table 3. Once a new output property
is created it will update with every output value from the
Python script if its name is in the output list of dictionaries.

For simple data types, the properties containing their his-
tories are also created. It allows us to see an output value
change with the time.

Table 3: Optional DOOCS Properties Attributes

Type Data Type
Single BOOL, SHORT, INTEGER, FLOAT, LONG,
DOUBLE and TEXT
Array SHORT, INTEGER, FLOAT, LONG,
DOUBLE
Complex SPECTRUM, IMAGE

Parameters from and to the Python Script

The parameters have the following format:
{’PARAM’: ’SOMENAME parameter description’,
>TYPE’:’type’, ’DATA’: data }. The keyword
PARAM is a command to the DAQ monitor server to create a
DOOCS property named SOMENAME with the type of type
and the value data. Every "parameter" DOOCS property
can be changed by operators. They are passed to the Python
script along with input DAQ channel data. In this way, one
can control and tune the Python script algorithm.

For both outputs and parameters, returning an existing
output or parameter without DATA field leads to the removal
of the corresponding DOOCS property.

The type of outputs and parameters can be changed on
the fly just by using a different type in the “TYPE’ field.

Monitoring and Controlling the Server

The DAQ monitor server can be controlled and monitored
by any DOOCS client. A user interface based on Java Doocs
Data Display JDDD [10] (see. Fig. 2) is used as the main
tool. First of all the panel allows the user to monitor the
signals on inputs, outputs, and set parameters (in the tab
‘Channels’, not shown in the Figure).

THPDPOT7
1331

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

DAQ_channel_monit

XFEL.TEST/DAQ. A - Dx

FLASHIXFEL DAQ on-line channel monitor

bereL. TesT ~ [oaq monron ~[moniror =

Channels | DAQFSM | Pythan |

e Re-start Script
| Func. [daq_monitor main

[Script netideldaq3/expordoocsiserveridag_monitor_seiver/print_input.py

ef daq_monitor_main(argv):
global called
if isinstance(argv, str):
called += 1
print('called (str): %d"(called))
return None
elif isinstance(argv, list):
#we have to check how many channels we have
dagnames = [|
for dt in argv:
dagname = dt'miscellaneousI[dagname]
if not dagname in dagnames:
dagnames.append(dagname)

res=[
for dagname in dagnames: =

Log-file

Print Content

Figure 2: JDDD DAQ monitor panel.

The tab DAQFSM in Fig. 2 contains the information on
the server status and statistics regarding the DAQ (e.g. data
processed, data skipped, history of processing time, etc.).

The tab shown in Fig. 2 provides the main parameters
regarding the Python script to run. The panel allows editing
the text on the fly and executing it after the text has been
changed. It reduces the time of debugging and tuning the
script algorithms.

USE CASE: ON-LINE MONITORING OF
LLRF CAVITIES AT EUROPEAN XFEL

In Ref. [11] we propose a neural network approach for de-
tecting anomalies and predicting failures in superconducting
radio frequency (SRF) cavities at the XFEL.

One of the most common issues in SRF cavities is quench
which entails abrupt transitions from the superconducting
state to the normal resistive state. These transitions typically
occur due to localized disturbances that elevate the surface
temperature beyond the critical threshold and lead to an
increase in resistance and loss of superconductivity of a
cavity.

Detecting such disturbances like quenches has an essential
importance for the operability of European XFEL. Currently,
the European XFEL employs an online quench detection sys-
tem, relying on the measurement of the loaded quality factor
(Q) during the RF pulse’s decay phase [12]. Nevertheless,
substantial efforts have been undertaken to enhance this ap-
proach, aiming to reduce the incidence of false positives in
the detection process.

Model

This method employs recurrent neural networks to ana-
lyze cavity operational time series data. The raw input com-
prises a sequence of 1820 waveform values (in frequency-
amplitude pairs over microseconds) with 6 channels - probe,
forward, and reflected (each in frequency-amplitude pair).
Thus, before any pre-processing, each raw pulse consists of
an array of 10920 float32 values received from DAQ.

THPDPO17
1332

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO17

As a preprocessing step, the channels are subsampled to
retain every 10th value, reducing the number of elements
in each pulse per channel to 182. The frequency-amplitude
pairs are then transformed into in-phase and quadrature com-
ponents to handle abrupt frequency jumps arising from the
angular coordinate representation of frequency.

The resulting 6 linearized 182-value channel vectors (total-
ing 1092 values) are fed into a single-layer LSTM recurrent
network to capture temporal dynamics. This architecture is
slightly simplified from Ref. [11] to minimize computational
overhead. The LSTM layer outputs a 64-dimensional hidden
representation per pulse. A final linear layer then projects
this to a 64-dimensional anomaly score vector used to assess
the pulse’s fault status by calculating its L2 distance from a
hypersphere center

To handle the significant class imbalance between limited
faulty data and abundant healthy data, same as in Ref. [11]
we employ a semi-supervised deep anomaly detection loss
function [13].

The new model is re-trained due to a slightly simplified
architecture to improve run-time and to adapt to domain drift
on the accelerator over time.

Training Data

The training data utilized in this work consisted of known
fault datasets captured by operators, often 5-second snap-
shots taken just before system shutdown, as well as short
5-second healthy snapshots captured during June, July, and
August 2023. This recent data was used to adapt the model
to current operating conditions. The healthy snapshots were
captured daily every 4 hours.

Since not every faulty snapshot taken by the operators
necessarily contained useful faulty signals, and up-to-date
annotated labels were not available unlike in Ref. [11], we
first utilized the approach from Ref. [12] to train a model to
detect anomalous cases and filter out probable uninforma-
tive faults. This allowed us to isolate the informative (like
quenches) faulty examples.

With the filtered subset of informative faults and known
healthy examples, we then retrained the model using the
semi-supervised loss function from Ref. [13], treating the
identified faults and healthy cases as labeled examples. This
follows a similar semi-supervised approach as shown in
Ref. [11]. By using the anomaly detection model to filter
the operator-captured faults, we obtained a cleaner set of
useful faulty data despite lacking complete up-to-date labels.
The combination of recent healthy snapshots and informa-
tive faults enabled the adaptation of the model to current
operating conditions.

Implementation Details

To minimize computational time, we took advantage of
a useful feature of PyTorch where the hidden states of the
LSTM layer can be returned and passed to future events.
This allows processing each pulse individually as they are
received, rather than passing the entire sequence at once,

Software

Data Management

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

while still obtaining the same output as if the full sequence
was passed.

Specifically, we maintained a dictionary containing the
name of each cavity and its last hidden state. When a new
event arrived, we passed the corresponding cavity’s previous
hidden state to the LSTM layer as an argument. The LSTM
then outputs a new hidden state, which we use to update
the value for that cavity in the dictionary. By storing the
hidden state in this manner and passing it sequentially, we
could process each pulse event individually in a streamlined
fashion, while retaining the full context and getting the same
result as batch processing the entire sequence. This approach
minimized computational time by avoiding reprocessing
previous pulses.

Furthermore, if the algorithm is run in parallel with the
DAQ, there is a buffer that records the incoming if the algo-
rithm pipeline is slower than the rate of the data flow.

Before the raw DAQ data are passed to the model, data
must be transformed into a format suitable format. The prepa-
ration consists of data subsampling of the input waveforms,
transformation into IQ coordinates, and normalization of
each waveform into range (-1, 1).

Computational Setup

We conducted the experiment on one of our DAQ ma-
chines regularly used during the operation. The machine is
equipped with 32 CPUs Intel(R) Xeon(R) E5-2650 with a
maximum frequency of 3.6GHz. The machine has 256 GB
RAM.

Time Performance

The run time consists of two components. One is data
preparation, where input data are transformed into a suit-
able format for the algorithm. The other part is the scoring
algorithm as it is described in Ref. [11].

When 32 cavities at A25 are evaluated online, the data
preparation takes 1141 ps and 6113 ps for anomaly detec-
tion. Note that the run-time of the anomaly detection can be
significantly improved on GPU.

Example Result: Quench on 2023-08-05 at 22:56

In the AS L2 European XFEL LLRF section, a quench
took place. In Fig. 3 we show the last 200 waveforms before
the cavity was switched off. This incident was promptly
logged by our operators, and an offline snapshot was captured
for subsequent post-mortem analysis, following the same
format as our online algorithms.

Figure 4 shows a notable rise in the anomaly score for
cavity C5.M1.A5.L2 at 22:55:39. Approximately 75 pulses
before the station is shut down compared to baseline (score
averaged over last 30 minutes) grows approximately 1/5
which indicates a likely anomaly.

Figure 3 shows full-resolution amplitude waveforms for
the 200 pulses preceding the shutdown. These waveforms
appear visually free of anomalies.

Software

Data Management

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO17

C5.M1.A5.L2 Quench 2023-08-05 22:55:39 - 22:56:59

— 30+

S

> 251

=3

o 201

o

3

£ 154 %

£

@ 10

S

Q

i 97

04 A
0 250 500 750 1000 1250 1500 1750
Time [us]

Figure 3: It shows 200 amplitude pulses (time range

22:56:39-22:56:59) recorded from station C5.M1.A5.L2
before the station stops recording any signals. The red curve
represents the probe, and the green and blue curves represent
the forward and reflected amplitudes, respectively.

0.38 1

Score s
=== Average of last 30 minutes

100 125 150 175 200
Pulse

0 25 50 75
Figure 4: Shows the anomaly scores generated by the
anomaly detection model [11] on C5.M1.A5.L2 for the

200 pulses prior to the modules being deactivated.

On-line Scoring

The previously discussed offline example does not reflect
the online evaluation of the entire pipeline.

Apart from the aforementioned capability of making of-
fline snapshots, the most important feature is to be capable
of running an arbitrary algorithm in an on-line regime with
minimum delay and recording the results back in DAQ. In
order to prove the capacity of the approach, we also ran
the algorithm on 32 cavities and recorded their runtime to
showcase that any algorithm programmed in Python can be
deployed with a minimum number of modifications.

CONCLUSION

In this work, we show a DAQ monitor server framework
for FLASH/XFEL DAQ systems that has proved to be a
convenient tool for building up ML servers for controlling,
monitoring, and feedback purposes.

THPDPO17
1333

©22 (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEP(S2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358

To illustrate our capabilities, we utilized one of our exper-
imental machine learning models [11] as a demonstration
of our ability to conduct computationally demanding calcu-
lations effectively, particularly in anomaly detection.

We presented an instance where a station experienced a
quench and, using an offline snapshot designed to mirror
offline operations. These experiments serve as a showcase
of our proficiency in deploying Python scripts and running
them in an online environment.

ACKNOWLEDGEMENT

We acknowledge DESY (Hamburg, Germany), a mem-
ber of the Helmholtz Association HGF, for its support in
providing resources and infrastructure. Furthermore, we
would like to thank all colleagues of the MCS group for their
contributions to this work and help in preparing this paper.

REFERENCES

[1] K. Rehlich, “Status Of The Ttf VUV-FEL Control System”,
in PCaPAC’05, Hayama, Japan, Mar. 2005, paper TUAI.

s}
3

A. Agababyan et al., “Multi-processor based fast data ac-
quisition for a free electron laser and experiments”, in /5th
IEEE-NPSS Real-Time Conference, Batavia, IL, USA, 2007,
pp. 1-5. doi:10.1109/RTC.2007.4382853

—
(O8]
—

European XFEL - The European X-Ray Free-Electron Laser
Facility. DESY - Deutsches Elektronen-Synchrotron, 2023.
http://xfel.desy.de

ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

= THPDPO17
()
1334

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

doi:10.18429/JACoW-ICALEPCS2023-THPDPO17

“FLASH - Free-Electron Laser in Hamburg”, DESY -
Deutsches Elektronen-Synchrotron, 2023, http://flash.
desy.de.

V. Rybnikov et al., “Buffer Manager Implementation for
the FLASH Data Aquisition System”, in Proc. PCaPAC’08,
Ljbuljana, Slovenia, Oct. 2008, paper TUP010, pp. 102-104.

M. Lutz, Learning Python 5th Edition, O’Reilly Media, Inc.,
Sebastopol, CA, USA, 2013.

B. Stroustrup, The C++ Programming Language, 4th ed.,
Addison-Wesley Professional, USA, 2013.

Python Software Foundation, “Python C-API Documen-
tation”, 2023, https://docs.python.org/3.9/c-api/
intro.html

E. T. Ray, Learning XML, O’Reilly and Associates, Cam-
bridge, MA, USA 2003.

E. Sombrowski, A. Petrosyan, K. Rehlich, and W. Schutte,
“jddd: A Tool for Operators and Experts to Design Control
System Panels”, in Proc. ICALEPCS’13, San Francisco, CA,
USA, Oct. 2013, paper TUMIBO09, pp. 544-546.

A. Sulc, A. Eichler, and T. Wilsken, “A data-driven anomaly
detection on SRF cavities at the European XFEL”, J. Phys.:
Conf. Ser., vol. 2420, no. 1, pp. 012070, 2023.

J. Branlard, V. Ayvazyan, O. Hensler, H. Schlarb, Ch.
Schmidt, and W. Cichalewski, “Superconducting Cavity
Quench Detection and Prevention for the European XFEL”,
in Proc. ICALEPCS’13, San Francisco, CA, USA, Oct. 2013,
paper THPPCO072, pp. 1239-1241.

L. Ruff ez al., “Deep semi-supervised anomaly detection”,
arXiv, 2019. doi:10.48550/arXiv.1906.02694

Software

Data Management

