
EPICS INTEGRATION FOR RAPID CONTROL PROTOTYPING
HARDWARE FROM SPEEDGOAT

L. Rossa∗, M. Brendike†

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany

Abstract
To exploit the full potential of fourth generation syn-

chrotron sources new beamline instrumentation is increas-
ingly developed with a mechatronics approach. Implement-
ing this raises the need for Rapid Control Prototyping (RCP)
and Hardware-In-the-Loop (HIL) simulations. To integrate
such RCP and HIL systems into every-day beamline op-
eration we developed an interface from a Speedgoat real-
time performance machine - programmable via MATLAB
Simulink - to EPICS. The interface was developed to be
simple to use and flexible. The Simulink software developer
uses dedicated Simulink-blocks to export model information
and real-time data into structured UDP Ethernet frames. An
EPICS IOC listens to the UDP frames and auto-generates a
corresponding database file to fit the data-stream from the
Simulink model. The EPICS IOC can run on either a beam-
line measurement PC or, to keep things spatially close on a
mini PC (such as a Raspberry Pi) attached to the Speedgoat
machine. An overview of the interface idea, architecture,
and implementation; together with a simple example will be
presented.

INTRODUCTION
Recently designed devices for research at synchrotron

sources require complex mechanical and mechatronic de-
signs, and therefore need advanced feedback control sys-
tems [1–3]. These control systems need to be constructed
diligently and are often designed, simulated and tested with
specific hardware for Rapid Control Prototyping (RCP) and
Hardware-In-the-Loop (HIL) simulations. Suppliers of these
hardware components often provide commercial products,
or Microsoft Windows compatible, dynamic link libraries to
interface their hardware. An open source interface to Linux
based operating systems is often not available.

To still be able to use commercial RCP and HIL tools in
the Linux based BESSY II beamline control environment
another solution than the commercial ones is necessary. Fig-
ure 1 illustrations how an alternative solution can look like.
The idea is to include an EPICS Input-Output-Controller
(IOC) into the RCP and HIL environment and thus connect
the System to the EPICS beamline control network.

Like the commercial products, the alternative solution
should be also easy to use and to integrate. Therefore the
following interface requirements are used:

• the RCP or HIL system should be integrable into a
beamline via plug-and-play,

∗ rossa@helmholtz-berlin.de
† maxim.brendike@helmholtz-berlin.de

Figure 1: Integration of RCP & HIL System into beamline
control environment.

• the developer behind the RCP or HIL system is not an
EPICS expert,

• the beamline scientist or user is not an expert in the
RCP or HIL architecture,

• the full flexibility of the RCP and HIL system should
be maintained,

• the developer should not struggle to keep EPICS in
sync with the RCP or HIL system.

As Fig. 1 indicates, in the RCP & HIL System block,
hardware from Speedgoat GmbH - further referenced as
Speedgoat PC - is used in this paper. However, the developed
interface is compatible with hardware from other suppliers
as long as MATLAB and Simulink are supported.

IMPLEMENTATION
There are two possibilities to integrate the EPICS IOC into

the RCP & HIL environment. One is to integrate the IOC
into the Speedgoat PC and run it directly on the real-time
hardware. The second is to run the IOC on separate hard-
ware and communicate to the Speedgoat PC via a dedicated
communication interface. Despite the additional hardware
requirement we chose the second option. This gives more
flexibility in case the Speedgoat PC needs to be replaced and
doesn’t bind real-time resources for EPICS communication.

The User Datagram Protocol (UDP) is used for commu-
nication between the EPICS IOC and Speedgoat PC. This
protocol was selected due to its simplicity and flexibility.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP013

Software

Software Architecture & Technology Evolution

THPDP013

1317

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 2: Communication between EPICS IOC and Speed-
goat Hardware.

UDP’s lacking reliability, due to the absence of handshak-
ing between sender and receiver, is currently ignored. The
Linux PC running the EPICS IOC has a dedicated Ethernet
connection for a point-to-point connection with the Speed-
goat PC, so package loss is unlikely. The lacking reliability
of UDP is currently ignored, since the Linux PC running
the EPICS IOC has a dedicated Ethernet connection for a
point-to-point connection with the Speedgoat PC.

The principal data flow is pictured in Fig. 2. The Speed-
goat PC sends a beacon signal every second, which includes
structural information about the frequently send UDP data
packages and the running real-time code. The EPICS IOC
uses this beacon to auto generate an EPICS database file, and
provide the corresponding EPICS records. The frequently
sent UDP data packages can now be interpreted by the EPICS
IOC and its data is put into the corresponding record fields.

If the EPICS user requests a change in one of the EPICS
records, the EPICS IOC sends an identically structured UDP
data package to the Speedgoat PC, which interprets the data
and sets the corresponding variables in the real-time pro-
gram.

In the following the UDP - frame architecture, MATLAB
& Simulink - Library and the EPICS IOC will be discussed
in more detail.

UDP - Frame Architecture
UDP is a communication protocol for transmitting arbi-

trary user data, wrapped up in individual UDP packages. [4]
To give this user data some context, specific data frames were
designed. As described earlier, the Speedgoat PC sends dif-
ferent signals, namely the UDP beacon and the UDP data.
Both will be discussed in the following.

The UDP Beacon Signal contains information about
the real-time program running on the Speedgoat PC. An ex-
ample UDP beacon package is shown in Fig. 3. The package
comprises a 49 byte long header with model information,
followed by a stack of object information for each EPICS
object that is defined in the real-time code. The object in-

��������	

��
����������
���
���
���
���
����������

	�����
��� ���� ���������� ��!"�� !���#$��$	

�
	
!
�
��
$

�	

�%� �$��������&�' ������ ��(��

�����������(���������!���

� ��)�������	��$���	#���

����

	
�
*�
�
��
$

�	
��

�� � 	�*����+��	�������	�*���

����

�� 	�*���,����

��

�
%��

��%�� -���!.	��������	#�

��%�� +�/���!!#����	��0�+1-,�1

�
%�(0�+1-,�1������	#�

��%��(

	
�
*�
�
��
$

�	
�

��� 	�*����+��	��

!��2�*���

��� 	� �#�	�*�����������	��$���

��� 	� �#�!�����������	��$���

���%���

���%��
 -���!.	��������	#�

��(%��� +�/���!!#����	��0�+1-,�1

���%��� 0�+1-,�1������	#�

���%���

�

!
�	
��
$

�	 ��� �

���%��� ��!!$
. ���	
 �

����

�$���$
����	
!���$
����#	.#���
���#�

� /�#�$	
 ���	

�%�� ����$���$	
 �	���
 �.���	 �#	.#���
�����$���!�)$� �3�4�	#�
-�510�&�$��!���
.� ���������'���(�����������!������%

	�*���,$! ���	

���	
 ��&5+' 	� �#�	�*�����������	��$����
5+6526�+6�26�	�	#6%����

!�������� ���	
 ��&$
�(
' 	� �#�!�����������	��$����
&"
'�$.
�!�$
�6���	��6�%����

$�7�!!#7$
� ���	�� ��
����������
 +�/���!!#����	�
-���!.	������ $
���
����������������

"!�7�	#�7$
� ���	�� �����

���������

$�7�!!#7��� ���	�� ��
�����������

��
����������������

"!�7�	#�7��� ���	�� �����

���������

�8�
��� �	���
 0�+1-7�$�
����	��� ��0�+1-��8
&�$��!���
.� ���������'������������(��(����������(����%

	�*���,$! ���	
 �

����

	�*���,���� ���	

�&52'

���

!�������� ���	
 ��&$
�(
'

����

$�7�!!#7$
� ���	�� ��
����������
 +�/���!!#����	�
-���!.	������ $
���
����������������

"!�7�	#�7$
� ���	�� �����

���������

$�7�!!#7��� ���	�� ��
�����������

��
����������������

"!�7�	#�7��� ���	�� �����

���������

�8�
��� �	���
 0�+1-7�	(
����	��� ��0�+1-��8
&�$��!���
.� ���������'������������(��(����������((���%

	�*���,$! ���	
 ���
��
	��	#��	�*�����&
	#������
	�*����+��	��(#!��2�*���'����

Figure 3: Example of UDP beacon packets.

formation block contains a unique object-ID, an object-type
reflecting its EPICS record type, its datatype, and the EPICS
PV name. In addition, information about the underlying
internet protocol (IP) setup is put into each object informa-
tion block, so that objects could be potentially distributed
among several EPICS IOCs running on different hardware
if needed.

The UDP Data Package contains information about
the current state of the EPICS objects. An example for two
UDP dataframes is shown in Fig. 4. The package content
starts with an 8 byte timestamp and additional meta data
if used. Next follows a stack of object information frames.
These object information frames contain a lot of redundant
data from the beacon, like the EPICS PV name, the datatype,
and the object-type; but in addition to them it includes the
fields value-count and value. The field value-count indicates
the dimension of the value field. If value-count is X, value
contains X measures stacked in this UDP data package. The
redundant object information are currently kept for debug-
ging. For performance reasons they could be dumped in a
future implementation.

Sending UDP data packages from the EPICS IOC to the
Speedgoat PC, to change values on the Speedgoat PC in
real-time, works identically. Here the EPICS IOC places
the new value into the UDP data package’s value field and
the Speedgoat PC extracts the value and links it with the
corresponding internal variables.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP013

THPDP013

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1318

Software

Software Architecture & Technology Evolution

������������	
����
�������
���������������������������������������

�� !� ��"! �#
! !$�"
	! %!$��"

�&� ��"! ��"
�� � ������ ���'��

��
��	�"!�������

(
)!
*
��
��
�

��

� � �$��

�
()!*�+�#
!

��

��&�� ,�	�!+*
��� � �$����$��

�'&��

�'&�� ,�	�! ��	
� �� �$����$����$����$��

(
)�
� �� �

��&���
������ ���	� � �$��

������������	
��
��
�����-�
���������������������������������������

�� !� ��"! �#
! !$�"
	! %!$��"

�&� ��"! ��"
�� � ������ �'����

��
��	�"!�������

(
)!
*
��
��
�

��

� � �$��

�
()!*�+�#
! ����-�

��

��&�� ,�	�!+*
��� � �$����$��

�'&��

�'&�� ,�	�! ��	
� ����� �$����$����$����$��

(
)�
� �� �

��&���
������ ���	� � �$��

"!��
����

�$���'���������'�(�������

()!*�+�� ���	�

���	� ������ �$��

������#
! ���	� ������'�� �$��

���	
�

�.���"! �	���� /��012��� �$����������'��'����������'����&

()!*�+�� ���	� �$�����
�"
3!������

"!��
����

�$(���'����������!�������

()!*�+�� ���	�

���	� �$��

������#
! ���	� ������'�� �$��

���	
�

�.���"! �	���� /��012�
' �$����������'��'����������''���&

()!*�+�� ���	� �$�����
�"
3!������

Figure 4: Examples of exchanged UDP data packets.

MATLAB & Simulink - Library
To hide the complexity of the UDP communication and

data handling inside the Simulink code, a library with user
defined Simulink blocks (Fig. 5) was created.

The library contains an EPICS send and EPICS receive
block (Fig. 5 left top and left center) to give the developer
access to Ethernet configuration. The use of these two blocks
is mandatory for the communication to the EPICS IOC.

When the two configuration blocks are included in the
Simulink code, the developer only needs to integrate the
EPICS record representing blocks and wire them to the de-
sired Simulink signals. The developer needs to provide each
of the blocks with a unique object ID, the EPICS PV name

Figure 5: Simulink library for EPICS communication.

Figure 6: State flow diagram of EPICS IOC.

Figure 7: Generated DB for EPICS IOC.

and a datatype. The rest is done automatically by the EPICS
IOC.

EPICS IOC
The EPICS IOC works in two steps (Fig. 6). First it

receives beacon packets (Fig. 3) and generates an EPICS
database file with mappings to internal code (Fig. 7). To
achieve this, the EPICS IOC configures itself at startup with
the received UDP beacon information. The EPICS IOC
supports analog and binary inputs and outputs, the EPICS
motor record and almost any field inside an EPICS PV, while
using common EPICS data types1. It is possible to use the
power of EPICS inside this IOC or elsewhere in the EPICS
network.

In the second step it synchronises the generated EPICS
PVs with the Speedgoat PC. UDP data packets (Fig. 4) going
from the Speedgoat PC to EPICS are handled as input and
are written to PVs. The EPICS IOC is based on EPICS asyn
and uses it where possible. If a field of a record incompatible
with EPICS asyn should be changed, EPICS base is used
instead [5, 6].

Data send from the EPICS IOC to the Speedgoat PC is
handled as output. Changes of EPICS PVs are detected with
an internal hook mechanism and the IOC sends UDP data
packets to the Speedgoat PC.

1 integers 1/8/16/32/64 bit, IEEE754 floating point 16/32/64 bit, strings up
to 40 ASCII characters

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP013

Software

Software Architecture & Technology Evolution

THPDP013

1319

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 8: Simulink example model for RCP on a single stepper motor.

Figure 9: Mechanical setup for example setup.

EXAMPLE
To demonstrate the usage of the developed tools a small

example will be discussed. In this example setup a signal fil-
ter for a motor feedback encoder is designed using Speedgoat
real-time hardware and MATLAB Simulink.

Figure 9 shows the mechanical setup for the example. It
comprises a 200 steps per revolution stepper motor and a
4000 increments per revolution quadrature encoder. Both
are connected to the Speedgoat PC.

Figure 8 shows the Simulink model designed by the RCP
developer. It exports the encoder feedback signals and the
motor signals into EPICS PVs (second column of blocks
from the right). The EPICS user can change the encoder’s
count direction and activate or deactivate a signal filter for
the encoder feedback. This is done by the two blocks on the
bottom left.

Compiling and running the program on the Speedgoat
PC will automatically generate the UDP data stream. The
Ethernet port configured in the EPICS send and receive
blocks is used for sending the UDP packages (see the top
left of Fig. 8).

Now a Linux PC running the EPICS IOC needs to be
connected to the configured Ethernet port of the Speedgoat
PC. Immediately after connecting the PCs, the IOC listens
for the UDP beacon, automatically generate a database file
and starts the actual IOC. Afterwards any EPICS user in the
network can access the EPICS PVs from the Speedgoat PC
via channel access.

CONCLUSION

The developed interface from Speedgoat hardware to
EPICS meets the initial requirements. The RCP & HIL envi-
ronment can be easily integrated via the EPICS IOC into an
existing EPICS environment. The EPICS users do not need
detailed knowledge about the internal structure of the RCP
& HIL hardware but can access the exposed information via
EPICS. Similarly the RCP & HIL developer doesn’t need to
know about the EPICS environment and can simply expose
data from the Simulink code via the developed Simulink
library.

The presented example works as a proof of the principle.
It demonstrates the use of the developed tools and shows
that the interface works.

A full performance benchmark still needs to be done. Next
steps include a full integration of a bigger system than the
example setup.

ACKNOWLEDGEMENTS

Special thanks to Roland Fleischhauer, Olaf Pawlizki,
Rayk Horn, Markus Neu and David Kraft for helping with the
hardware integration of the Speedgoat PC into the BESSY II
electronics environment.

Thanks to the EPICS [7] community.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP013

THPDP013

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1320

Software

Software Architecture & Technology Evolution

REFERENCES
[1] R. R. Geraldes et al., “Mechatronics Concepts for the

New High-Dynamics DCM for Sirius”, in Proc. MEDSI’16,
Barcelona, Spain, Sep. 2016, pp. 44–47.
doi:10.18429/JACoW-MEDSI2016-MOPE19

[2] M. Brendike et al., “ESRF-Double Crystal Monochromator
Prototype - Control Concept”, in Proc. ICALEPCS’19, New
York, NY, USA, Oct. 2019, pp. 776–780.
doi:10.18429/JACoW-ICALEPCS2019-TUCPL05

[3] T. Dehaeze, J. Bonnefoy, and C. G. R. L. Col-
lette, “Mechatronics Approach for the Development

of a Nano-Active-Stabilization-System”, in Proc.
MEDSI’20, Chicago, IL, USA, Jul. 2021, pp. 93–98.
doi:10.18429/JACoW-MEDSI2020-TUIO02

[4] RFC 768,
https://datatracker.ietf.org/doc/html/rfc768

[5] https://github.com/epics-modules/asyn

[6] https://github.com/epics-base/epics-base

[7] https://epics-controls.org/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP013

Software

Software Architecture & Technology Evolution

THPDP013

1321

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

