

CONAN FOR BUILDING C++ TANGO DEVICES AT SOLEIL
P. Madela†, Y. M. Abiven, G. Abeillé, X. Elattaoui, J. Pham, F. Potier

Synchrotron SOLEIL, Gif-sur-Yvette, France

Abstract
At SOLEIL, our Tango devices are mainly developed in

C++, with around 450 projects for building libraries and
device servers for our accelerators and beamlines. We have
a software factory that has enabled us to achieve continu-
ous integration of our developments using Maven, which
manages project dependencies. However, Maven is un-
common for C++. In addition, it has limitations that hinder
us from supporting future platforms and new programming
standards, leading us to replace it with Conan. Conan is a
dependency and package manager for C and C++ that
works on all platforms and integrates with various build
systems. Its features are designed to enable modern contin-
uous integration workflows with C++ and are an ideal al-
ternative to Maven for our C++ build system. This transi-
tion is essential for the upgrade of SOLEIL (SOLEIL II),
as we continue to develop new devices and update existing
systems. We are confident that Conan will improve our de-
velopment process and benefit our users. This paper will
provide an overview of the integration process and de-
scribe the progress of deploying the new build system. We
will share our insights and lessons learned throughout the
transition process.

CONTEXT
At SOLEIL [1], our software development process relies

on a well-established framework that encompasses various
tools and practices, as illustrated in Fig. 1. This framework
is crucial for ensuring the reliable operation of our acceler-
ators and beamlines. It is the result of many years of work
aimed at automating the delivery process, as documented
in previous papers [2, 3]. The key components of our ex-
isting setup are as follows.

Deployment Process
Our deployment process involves a combination of Con-

tinuous Integration and Continuous Delivery (CI/CD)
practices. Continuous integration is employed to build soft-
ware artifacts automatically, ensuring that code changes
are regularly integrated and tested. Additionally, we have a
semi-automatic continuous delivery system in place to cre-
ate packages that can be easily deployed. However, it's
worth noting that the deployment of these packages cur-
rently requires manual intervention during each technical
shutdown period.

Software Factories
We maintain two separate software factories to accom-

modate the diverse needs of our projects. The first one is
dedicated to C++ development and is responsible for

building approximately 400 Tango [4] device servers along
with their respective libraries. Table 1 shows the number of
C++ projects by platform. The second factory, specializing
in Java development, oversees approximately 30 Tango de-
vice servers, along with libraries and graphical user inter-
faces.

Table 1: Number of C++ Projects
Type Linux Windows Both
Application 1 0 0
Libraries 29 6 8
Devices 330 53 23

Tools of Software Factories
To support these software factories and facilitate our de-

velopment workflows, we employ a set of tools that in-
cludes Gitlab Soleil [5] for version control, Jenkins [6] for
automation, and Maven [7] for dependency management.

Figure 1: Software development process.

Developers

Source code

Binaries

Packages

Acceptance

Control system

Code

Build

Release

Test

Deploy

 __

† patrick.madela@synchrotron-soleil.fr

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO15

Software

Software Best Practices

THMBCMO15

1227

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Limitations of Existing Infrastructure for C++
While our current system has proven effective, it does

exhibit certain limitations, particularly in the context of
C++ projects. Some of the noteworthy constraints include:
 32-Bit Binary Limitation: Our system is only capa-

ble of generating 32-bit binaries for Linux CentOS 6
[8] and Windows 7 [9]. It lacks support for crucial
modern features, such as creating 64-bit programs and
adhering to the latest C++ standards.

 Outdated Components: This limitation stems from
the fact that certain components of our system are out-
dated and difficult to update. The process of modern-
izing this setup has become complex, further empha-
sizing the need for a more flexible and adaptable so-
lution.

 Maven Mismatch: Another challenge lies in the mis-
match between Maven and C++ development. While
Maven has proven reliable for Java projects, it is not
commonly used in the realm of C++. This mismatch
makes it challenging for us to share our build ap-
proach with other institutes. Additionally, there is no
built-in support within Maven for building third-party
code, making it difficult to seamlessly integrate exter-
nal libraries.

STRATEGY
Conan [10] as a Maven Alternative for C/C++

Recognizing the limitations of our current infrastructure
for C++ projects, we have undertaken the task of identify-
ing a suitable alternative. Our choice has led us to Conan,
a dependency and package manager designed for C and
C++ languages. Conan brings several distinct advantages:
 Repository for C/C++: Conan serves as a repository

for managing packages and dependencies, offering a
familiar structure akin to other package managers
used in the software development world for other lan-
guages such as Maven, npm [11], and PyPI [12].

 Abstract Build System: Conan is an abstract build
system, compatible with various other build systems
like CMake [13], Make [14] and MSBuild [15]. It en-
sures seamless integration of packages from different
development environments.

 Multi-platform and Multi-binaries: Conan's reposi-
tory system excels in managing packages for multiple
platforms and binaries, aligning well with our diverse
software requirements.

 Public Central Repository: Conan provides easy ac-
cess to a wide range of popular open-source C/C++
libraries through its central repository.

 Continuous Integration Support: Conan aligns well
with our goal of establishing robust continuous inte-
gration workflows for C/C++ development.

Understanding Conan Recipes
In the context of Conan, a recipe serves as a fundamental

element that guides the building and packaging of software
components, encompassing applications, libraries, and

tools. Essentially, a Conan recipe is a Python [16] script
that encapsulates crucial information, enabling the con-
struction and distribution of these components. The key
components of a Conan recipe are as follow:
 Specification of Dependencies: A Conan recipe out-

lines the dependencies required for the successful con-
struction of the software component. This includes
specifying other libraries, tools, or packages upon
which the component relies.

 Build Instructions: The recipe provides detailed in-
structions on how to build the component from source
code. This encompasses compiler flags, build config-
urations, and any custom steps necessary to create the
binary.

 Metadata: Metadata, such as version information, au-
thorship, and licensing details are included within the
recipe, ensuring transparency and clarity for both cre-
ators and consumers of the component.

 Consumer Information: A Conan recipe also offers
essential details about the packaged library or tool,
making it accessible and understandable to potential
consumers.

To facilitate the construction and distribution of compo-
nents within recipes, Conan provides a comprehensive set
of tools. These tools simplify the management of depend-
encies, the generation of build files compatible with vari-
ous build systems (e.g., CMake, Make, and MSBuild), and
the integration of components into diverse development
environments.

Our Forward-Looking Approach
We have chosen CMake as our primary build system,

which is widely adopted and versatile for both Linux and
Windows. Conan's recipes help us include dependencies
and compilation options, ensuring efficient development
and packaging of our Tango device servers.

In response to the challenges imposed by the obsoles-
cence of components in our existing infrastructure, we
have adopted a forward-looking strategy. This strategy in-
volves the creation of a new infrastructure capable of ac-
commodating both future platforms and legacy 32-bit en-
vironments.

REALIZATION
Transition to Conan

Our transition to Conan has followed these key steps:
1. Learning Conan: We started by learning how to use

Conan.
2. Building Necessary Libraries: Next, we have built

the libraries essential for the development of our
Tango device servers.

3. Proof Of Concept (POC): To validate the effective-
ness of Conan and its compatibility with our infra-
structure, we initiated several Proof of Concept (POC)
projects. Two notable POCs includes the successful
construction of the Lima [17] package, which couldn't
be built on our existing infrastructure due to its 64-bit
platform requirements. Additionally, we created a

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO15

THMBCMO15

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1228

Software

Software Best Practices

Tango device for ChimeraTK [18], which is notably
not natively buildable on our CentOS platforms.

4. Automation: Following these successful tests, we
streamlined our workflow by automating certain as-
pects of the package-building process. This step was
imperative to effectively manage the diversity of de-
pendencies and platforms involved in our projects.

5. Transition to Production: The final step involves
building and testing all our Tango device server pro-
jects using Conan and CMake instead of Maven. Ad-
ditionally, we will conduct training sessions and facil-
itate knowledge transfer to support our developers in
adapting to the changes.

Tools and Infrastructure
Throughout the various phases of our transition to Co-

nan, significant effort was invested in establishing the nec-
essary build tools and infrastructure. This included the de-
velopment of up-to-date build tools for our legacy Linux
and Windows environments, as well as the creation of
Docker [19] images for Linux that integrated these tools
for our build jobs.

We have also deployed the new software factory infra-
structure, which incorporates the following principal com-
ponents:
 Artifactory [20] as a Conan repository.
 Jenkins for automating build processes.
 Docker-based Jenkins agents for Linux.
 Jenkins agents for Windows with necessary build

tools.

CONCLUSION
During our transition to Conan, we have identified both

positive and negative aspects which can be summarized as
following:

Pros of Conan
 Package and Dependencies Management: Conan

provides a robust system for managing packages and
their dependencies, simplifying the overall building
process.

 Multiplatform Support: Its support for multiple plat-
forms enhances flexibility, enabling us to address the
diverse requirements of our projects on our legacy
Linux and Windows platforms.

 Flexibility with Build Systems: Conan's compatibil-
ity with various build systems, including CMake and
Make in our case, offers flexibility for integrating
Tango with its dependencies and other components.

 Version and Revision Control: Conan offers robust
version and revision control and can support both our
current and future release processes.

 Access to Popular Open-Source Libraries: The
public central repository facilitates easy access to a
wide range of popular open-source C/C++ libraries.

Cons of Conan
 Initial Learning Curve: Conan requires an initial

learning curve to become familiar with its features.
 Introduces Additional Complexity: The introduc-

tion of Conan may add complexity to the development
process by adding an additional layer.

 Still Requires Knowledge of Sub-Build System:
Despite its abstraction, working with Conan may still
requires some understanding of underlying sub-build
systems.

 Requires Recent Version of Tools: To fully leverage
Conan’s features, having up-to-date tool versions is
necessary, which may pose challenges for our legacy
systems.

 Compatibility Limitation of Conan-Center Reci-
pes: Conan-Center recipes may have compatibility
limitations that necessitates rewriting our own recipes
for our legacy platform.

Conan as the Alternative for Our Build System
In conclusion, our adoption of Conan, integrated with the

CMake build system, has proven to be a compelling alter-
native to replace our previous Maven-based build system.
This transition has allowed us to simultaneously build de-
vices for both legacy and future platforms, demonstrating
our commitment to accommodating evolving technologies.

One notable advantage has been the simplified collabo-
ration process while maintaining OS independence. Co-
nan's centralized Jenkins pipeline templates and shared
profiles/configurations between CI/CD and developer's en-
vironments will enhance our development workflow.

Furthermore, the shift to Conan has prepared us for up-
coming challenges, including the migration to 64-bit and
newer compilers/standards, the update of our deployment
process, and the expansion of CI/CD capabilities for other
domains, including those involving FPGA and firmware
developments.

With Conan and CMake, we are well-equipped to de-
velop future Tango device servers for the SOLEIL II [21]
upgrade.

REFERENCES
[1] Synchrotron Soleil,

https://www.synchrotron­soleil.fr

[2] A. Buteau et al., “Making continuous integration a reality
for control systems on a large scale basis”, in Proc.,
ICALEPCS’09, Kobe, Japan, Oct. 2009, paper TUP050,
pp. 200-202.

[3] G. Abeillé et al., “Continuous delivery at Soleil”, in Proc.
ICALEPCS'15, Melbourne, Australia, Oct. 2015, pp. 51-55.
doi:10.18429/JACoW­ICALEPCS2015­MOD3O02

[4] Tango Controls, https://www.tango­controls.org
[5] Conan, https://conan.io
[6] Gitlab Soleil,

https://gitlab.synchrotron­soleil.fr

[7] Jenkins, https://www.jenkins.io
[8] Apache Maven, https://maven.apache.org

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO15

Software

Software Best Practices

THMBCMO15

1229

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

[9] CentOS, https://www.centos.org
[10] Microfoft Windows, https://windows.microsoft.com

[11] NPM, https://www.npmjs.com
[12] PyPI, https://pypi.org
[13] Cmake, https://cmake.org
[14] GNU Make, https://www.gnu.org/software/make
[15] Microsoft Visual Studio, https://learn.mi­

crosoft.com/en­us/visualstudio/msbuild

[16] Python, https://www.python.org
[17] LIMA, https://lima1.readthedocs.io/en/latest
[18] ChimeraTK, https://github.com/ChimeraTK
[19] Docker, https://www.docker.com
[20] JFrog Artifactory,

https://jfrog.com/fr/artifactory

[21] Y. M. Abiven et al., “SOLEIL II: Towards A Major Trans-
formation of the Facility”, presented at ICALEPCS’23,
Cape Town, South Africa, Oct. 2023, paper TUMBCMO21,
this conference.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO15

THMBCMO15

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1230

Software

Software Best Practices

