
WHATRECORD: A PYTHON-BASED EPICS FILE FORMAT TOOL ∗

Kenneth Lauer† , SLAC National Accelerator Laboratory, Menlo Park, CA

Abstract
whatrecord is a Python-based parsing tool for interact-

ing with a variety of EPICS (Experimental Physics and In-
dustrial Control System) file formats, including V3 and V7
database files. The project aims for compliance with epics-
base by using Lark grammars that closely reflect the original
Lex/Yacc grammars.

whatrecord offers a suite of tools for working with its
supported file formats, with convenient Python-facing data-
class object representations and easy JSON (JavaScript Ob-
ject Notation) serialization. A prototype backend web server
for hosting IOC (Input/Output Controller) and record infor-
mation is also included as well as a Vue.js-based frontend,
an EPICS build system Makefile dependency inspector, a
static analyzer-of-sorts for startup scripts, and a host of other
things that the author added at whim to this side project.

BACKGROUND
The Problem - and the Inspiration

Before digging into the details of the whatrecord [1],
toolsuite, let us first take a look at the problem and the
inspiration behind its creation.

At the LCLS (SLAC’s Linac Coherent Light Source),
the accelerator and photon side control systems include ap-
proximately 3000 IOC instances in total, with hundreds of
modules and dozens of versions per module.

In general, these EPICS [2] IOCs, modules, and exten-
sions are comprised of a conglomeration of unique file for-
mats. Some common examples of such file formats include:

• Process database files (.db)
• Database definition files (.dbd)
• Template / substitutions files
• IOC shell scripts (st.cmd)
• StreamDevice protocols (.proto)
• State notation language programs (.st)
• Gateway configuration (.pvlist)
• Access security files (.acf)
• Build system Makefiles
Additionally, facility-specific tools (centralized IOC man-

agement tools like LCLS’s IOC Manager, archiver appli-
ance automation tools, and so on) build on top of IOCs and
records.

Combined, this makes for an enormous code base with a
mix of these EPICS-specific file formats.

Links between these files are often implicit. Take, for
example, that an EPICS IOC record has a specific record
type name alongside its name in a database file (.db), an
EPICS PV (Process Variable) name, in a traditional IOC,
∗ WORK SUPPORTED BY U.S. D.O.E. CONTRACT DE-AC02-

76SF00515.
† klauer@slac.stanford.edu

starts with the record name defined in a database file. This
PV name acts as a global identifier that allows for clients on
the same network subnet to access - and potentially modify -
related data.

A record is made up of fields which can contain meta-
data like engineering units or user-specified descriptions,
references to other records, relevant data values, and so on.

An example record instance, defining a single AI (analog
input) record named IOC:RECORD:NAME is as follows:

record(ai, "IOC:RECORD:NAME") {}

This file does not define what the fields of the record type;
that is the responsibility of the database definition file (.dbd).
A simplified excerpt from a database definition file, defining
a single field for the ”ai” record type is as follows:

recordtype(ai) {
...
field(NAME, DBF_STRING) {

special(SPC_NOMOD)
size(61)
prompt("Record Name")

}
...

}

Note that there is no explicit link between the database
file and the database definition file: neither reference the
other by filename. Rather, one can only infer the link by
examining a third file, the IOC-specific IOC shell script
(.cmd) file, line-by-line.

An excerpt from such a startup script could look like:

dbLoadDatabase("path/to/the.dbd",0,0)
IOC_registerRecordDeviceDriver(pdbbase)
dbLoadRecords("records.db")

Each line of this script includes up to one command. Each
of those commands has been registered by either EPICS
itself, the modules included in the IOC, or the IOC source
code itself. Typically, the available commands would be
found either in documentation or by executing the IOC and
invoking the built-in help system. Alternatively, the most
reliable fallback ends up being the source code itself.

Other direct or indirect references may be found inside
fields. For example, depending on the DTYP (device type)
field, the INP (input specification) field may be a custom
string defined at the device support layer. Interpretation of
this field requires knowledge of how these are formatted.
Take StreamDevice [3], a generic support module for com-
municating with controllers that use simple byte streams for
communication, for example:

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO08

THMBCMO08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1206

Software

Software Architecture & Technology Evolution

record(ai, "IOC:RECORD:NAME") {
field(DTYP, "stream")
field(INP, "@ProtocolFilename.proto getValue

PS1")
}

The device type here is set to "stream", a custom identi-
fier that StreamDevice has hard-coded. This instructs EPICS
to use StreamDevice and interpret the INP field with it. It us
up to the IOC developer to understand the format of these
strings and set them appropriately, in order to reference back
to the protocol file that defines the byte string to send and
the expected response format. Here, a StreamDevice pro-
tocol file for the above record indicates that a simple string
WHAT:IS:THE:VALUE? is to be sent, and a floating point
value (%f, as in the C scanf format specifiers) is to be sent
from the controller:

getValue {
out "WHAT:IS:THE:VALUE?";
in "%f";

}

This section is a small but important part of what makes
up an IOC: the build system surrounding all of these files,
other modules with their own standards, access security
configuration for intra-subnet access, gateway configuration
controlling inter-subnet access, facility-specific tools that
rely on PV names, and so on further complicate the number
of files and references one needs to be aware of.

While those familiar with EPICS IOC development may
find that the above is obvious and simple, it can be opaque at
best to those unable to dedicate the time to reading through
esoteric (and often outdated) manuals or source code.

Goals and the Emergence of whatrecord
The previous section’s problem led the author over the

years to desire a tool that could somehow unify these file
formats and provide the ability to inspect the links.

These initial goals led to the creation of this new Python
package, whatrecord:

• Allow for easy parsing of all the special formats outside,
and represent them in a widely-used interchange format
like JSON.

• Aid the user in the understanding of existing IOCs,
whether they are deployed and running or not.

• Provide a method to see how different records, different
IOCs, all relate to one another, without requiring the
IOC to be running.

• Provide a method for cross-referencing a PV name to
its database file, record definition, startup script, and
IOC.

With these implemented, pathways for new possibilities
were opened: the ability to linking records to PLC code, to

StreamDevice protocol information, to gateway access rules,
and even shell commands to their respective source code.

CORE FUNCTIONALITY
Overview

whatrecord will parse any of the following into intuitive
Python dataclasses using the Lark [4] parsing toolkit:

• Database files (V3 or V4/V7), database definitions,
template/substitution files

• Access security configuration files

• Autosave .sav files

• Gateway pvlist configuration files

• StreamDevice protocol files

• snlseq/sequencer state machine parsing

IOC shell scripts (i.e., st.cmd) can be interpreted and
annotated with contextual information during the loading
process. The process aims to record what files were loaded
during startup, what records will be available in the IOC,
what errors were found when loading, what file and line did
each record get loaded, and what are the inter- or intra-IOC
record relationships.

Additionally, whatrecord offers tools for:

• Exporting all parsed results to JSON-serializable ob-
jects.

• EPICS build system Makefile introspection, a sumo
[5]-inspired implementation.

• GDB Python script that inspects binary symbols to
find IOC shell commands, variables and source code
context

dbLoadRecords [str: fname] [str: subs]
.../src/ioc/db/dbIocRegister.c:53

• Accurate EPICS macro handling using epicsmacrolib
[6].

• Linting startup scripts.

• Plugins for loading happi devices, TwinCAT PLC
projects, and IOC information from LCLS’s IOC man-
ager.

• Process database record to Beckhoff TwinCAT PLC
source code definition mapping (when used in conjunc-
tion with pytmc [7]).

An intuitive Python API, user-facing command-line tools,
a web-based API/backend server to monitor IOC scripts and
serve IOC/record information, and a Vue.js-based frontend
single-page application are also provided.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO08

Software

Software Architecture & Technology Evolution

THMBCMO08

1207

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Parsing with Lark
whatrecord utilizes the Lark parser internally to parse

most of its supported file formats. Lark supports writing
custom parsers with EBNF (extended Backus–Naur form)
metasyntax. It is capable of parsing all context-free gram-
mars with ambiguity resolution.

The grammars implemented in whatrecord closely re-
semble those in EPICS because the source Lex/Yacc gram-
mars are syntactically similar. A test suite is included in
whatrecord which attempts to cover various aspects of the
packaged grammars.

Parsing a file in whatrecord results in user-friendly type
annotated dataclass instances. These can be readily in-
spected programmatically, serialized to JSON, and - in sev-
eral cases - exported back into their original format.

import whatrecord
db = whatrecord.parse(

"whatrecord/tests/iocs/db/basic_asyn_motor.db"
)
record = db.records["(P)(M)"]
print(record.fields["TWV"].value) # -> '1'

A key feature of whatrecord’s parsing utilities is that it
records the context of many operations. When two different
files are used to load a record, both will be present in the
context information:

import whatrecord
ioc = whatrecord.parse(

"whatrecord/tests/iocs/ioc_a/st.cmd"
)
db = ioc.shell_state.database
record = db["IOC:KFE:A:One"]
print(record.context)

Yields the following, indicating the files and line numbers
used to load the given database record instance:

(whatrecord/tests/iocs/ioc_a/st.cmd:13,
whatrecord/tests/iocs/ioc_a/ioc_a.db:1)

Exporting/Serializing to JSON
With the whatrecord command-line entry point, you can

parse supported formats and pipe their information to tools
like jq [8] to interact and run basic queries on data.

The following lists all records in a database file and selects
a set of information:

$ whatrecord parse
whatrecord/tests/iocs/db/pva/iq.db |

jq '.records[] | [.name, .record_type,
.fields.OUT.value]'

[
"$(PREFIX)Rate",
"ao",
"$(PREFIX)dly_.ODLY NPP"

]

[
"$(PREFIX)Delta",
"ao",
null

]
...

The following inspects some EPICS V4 Q:Group settings:

$ whatrecord parse
whatrecord/tests/iocs/db/pva/iq.db |

jq '.records[] | [.name, .info["Q:group"]]'
[

"$(PREFIX)Rate",
null

]
[

"$(PREFIX)Phase:I",
{

"$(PREFIX)iq": {
"phas.i": {

"+type": "plain",
"+channel": "VAL"

}
}

}
]
...

FORMATS AND IMPLEMENTATION
NOTES

Database Files whatrecord implements two gram-
mars for EPICS process databases, as there are significant
differences between the grammars used for EPICS V3 and
V4+ IOCs.

A flag is available --v3 for whatrecord parse to aid
facilities that have not yet opted in to using V4+.

Access Security Configuration Files (ACF) wha-
trecord parses ACF files that target typical EPICS IOCs
along with the EPICS gateway. This information can be cor-
related to records in the frontend, covered in a later section.

Substitution Files Substitutions files and those sup-
ported by dbLoadTemplate are readily supported by
whatrecord. Contextual information as to which files are
loaded in the process is reliably carried along.

A separate grammar for the format used by the command-
line tool MSI (the Macro Substitution and Include tool) is
also provided due to their differing implementations.

Autosave Save Files Autosave save files (.sav), which
track the state of a record such that it may be restored at the
next boot of an IOC, are supported by whatrecord. In the
web frontend, these values will be displayed alongside those
in the database file.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO08

THMBCMO08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1208

Software

Software Architecture & Technology Evolution

Gateway PV Lists Gateway .pvlist files are sup-
ported by whatrecord. In the frontend, this allows for the
easy correlation of gateway rules to records that apply to it,
and also in reverse, showing which gateway rules apply to
the selected record.

Sequencer - State Notation Language The EPICS se-
quencer’s state notation language format .st files is sup-
ported by whatrecord with some caveats. whatrecord
does not have full support for a C preprocessor, which the se-
quencer relies on. This means that for simple files (and those
that only use simple C defines), whatrecord successfully
parses the files, whereas complicated defines could fail to
parse with the included grammar.

LCLS-Specific Formats At the LCLS, there are addi-
tional file formats that are in common use. The epicsArch
format enumerates process variables that are to be included
for recording in its data acquisition system. whatrecord
provides support for this format and allows for linting and
display through the frontend.

The LCLS photon controls team uses the Python suite
Bluesky [9] for slow-speed data acquisition, with approxi-
mately 1,000 Ophyd devices indexed in a happi [10] database.
whatrecord provides happi integration, mapping process
variables used in Ophyd devices back to their IOCs.

Startup Scripts Startup scripts do not have a corre-
sponding grammar. In the EPICS implementation, the IOC
shell parses commands character-by-character with a custom
routine. whatrecord has a ported version of this parsing
function for maximum compatibility, supporting redirection
and everything else from the original.

Macro Handling Files supported by whatrecord of-
ten use the EPICS macro library (macLib) in order to in-
terpolate variables (environment variables or otherwise) to
their corresponding values.

whatrecord uses epicsmacrolib, which is a Cython-
wrapped version of EPICS macLib, under the hood to duti-
fully reproduce standard EPICS macro expansion and state
tracking.

Makefiles Makefiles can be inspected to reveal per-
module or per-IOC dependencies and settings of the
EPICS build system. Unlike the other supported formats,
Makefiles are not parsed but rather introspected by way of
GNU make, an optional external requirement.

The implementation is noted as sumo-inspired, as an im-
portant part of how sumo scans source code is replicated.
The library executes make with a custom target, enabling
the direct handling of any and all Makefile syntax that the
host supports.

whatrecord is able to extract a variety of information
from a Makefile in this manner, exporting information
such as the EPICS build architectures, cross-compiler host
architectures, target architectures, the EPICS base version,

 ss1.low delay(.1)

 printf("now changing to high\n");

v > 5.0

 Entry
(Startup)

 ss1.high
ss1.high delay(.1)

 printf("changing to low\n");

v <= 5.0

Figure 1: A sample state notation language program graph.

configuration paths, release top variables, environment vari-
able settings, and so on.

Backend Server
Building on top of the parsing tools, whatrecord pro-

vides an aiohttp [11]-based ”backend” server daemon that
enables users to query IOC-related information over a REST-
ful (REpresentational State Transfer) JSON interface.

A summary as to how the backend server operates is as
follows:

1. Find all EPICS IOCs specified by the user (or those
listed in LCLS’s IOC manager tool).

2. Load the startup scripts with the built-in parsing tools,
including databases and supported files.

3. Periodically check previously-loaded files for changes,
and re-load IOCs.

4. Listen for clients (or the whatrecord frontend) query-
ing for IOC information by way of aiohttp.

Command-Line Tools
whatrecord Deps This tool utilizes the Makefile pars-

ing tools internally to recursively generate a dependency
graph of supporting modules to a given IOC.

whatrecord Graph This graphing tool allows for graph-
ing of records or state notation language transition diagrams.
Inter-IOC record links may be graphed if multiple database
files or startup scripts are specified.

A sample state notation language graph is shown in Fig. 1,
and a sample record relationship graph is shown in Fig. 2.

whatrecord Server This command spawns the backend
server. It may also be used to export a cached state for offline
usage by the frontend.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO08

Software

Software Architecture & Technology Evolution

THMBCMO08

1209

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

ao IOC:CALC:WriteToHardware

calc IOC:CALC:Calculate

FLNK IOC:CALC:WriteToHardware

INPA IOC:CALC:InputA CPP MS

INPB IOC:CALC:InputB CA

INPC IOC:CALC:InputC CPP NMS

ai IOC:CALC:InputA

VAL 0.0

CPP MS

ai IOC:CALC:InputB

VAL 1.0

CA

ai IOC:CALC:InputC

VAL 2.0

CPP NMS

Figure 2: A sample record relationship graph.

*
IOC:ACF:LI:OPSTATE

> /home/runner/work/ioc-useless-test/ioc-useless-test/iocBoot/ioc-test/st.cmd:26
> /home/runner/work/ioc-useless-test/ioc-useless-test/iocBoot/ioc-test/acf.db:1

record(longin, "IOC:ACF:LI:OPSTATE") {
 field(VAL, "0")
}

Key Value

context > ioc-useless-test/iocBoot/ioc-test/example.acf:9

inputs

Key Value

INPA IOC:ACF:LI:OPSTATE

INPB IOC:ACF:LI:lev1permit

name DEFAULT

-

Key Value

calc A=1

context > ioc-useless-test/iocBoot/ioc-test/example.acf:12

hosts
- icr
- cr

level 0

options WRITE

users - op

 Records  IOCs  PV Map  happi  Gateway  Duplicates  Logs

Glob Regex



IOC:ACF:LI:OPSTATE

IOC:ACF:LI:lev1permit

IOC:ACF:Test

IOC:MOTOR:ASYN

IOC:MOTOR:M1MOTOR

IOC:MOTOR:M1MOTOR_able

IOC:MOTOR:M1MOTOR_ableput

IOC:MOTOR:M1MOTOR_twCh

IOC:MOTOR:M1MOTOR_vCh

IOC:MOTOR:M2MOTOR

IOC:MOTOR:M2MOTOR_able

IOC:MOTOR:M2MOTOR_ableput

IOC:MOTOR:M2MOTOR_twCh

IOC:MOTOR:M2MOTOR_vCh

IOC:STREAM:checksum

IOC:STREAM:cmd

IOC:STREAM:info

IOC:STREAM:log0

IOC:STREAM:log1

IOC:STREAM:log2

IOC:STREAM:spy

IOC:TEST:recordname

aliasname1

aliasname2

Results

Part of ioc-test

Archiver

Autosave

Gateway

Access Security Group

Figure 3: whatrecord frontend: a record with access security
group settings.

whatrecord Lint This command offers a work-in-
progress set of linting tools, most of which has not yet been
well-defined. The goal for these tools will be to allow a
facility to enforce certain standards for their IOC files and
avoid common pitfalls by detecting issues prior to the IOC
boot process.

WEB FRONTEND
A Vue.js [12] web-based frontend application is packaged

separately in the whatrecord repository. It provides a user-
friendly view of the information that whatrecord can parse
and aggregate.

A searchable index of records is the primary view. Record
information can be used to correlate back to other tools and
views. For example, when an autosave configuration is found
in an IOC, the frontend will display that information in a
table underneath ”Autosave” and annotate the record to show
the on-restore value.

Similarly, StreamDevice protocol files, happi devices,
asyn and motor port, Archiver Appliance, access security
groups, and others will be displayed alongside the record
information. Source code files may be viewed by clicking
on any context link.

Record links, when detected, are displayed as an interac-
tive graph (by way of d3-graphviz [13]). Inter-IOC links
can be interactively investigated in the ”PV Map” section.

Sample screenshots of the frontend are shown in Figs. 3
and 4.

*
IOC:STREAM:log0

> /home/runner/work/ioc-useless-test/ioc-useless-test/iocBoot/ioc-test/st.cmd:30
> /home/runner/work/ioc-useless-test/ioc-useless-test/iocBoot/ioc-test/stream.db:26

record(stringin, "IOC:STREAM:log0") {
 field(INP, "IOC:STREAM:spy")
}

Save

stringin IOC:STREAM:log0

INP IOC:STREAM:spy

VAL

stringin IOC:STREAM:log1

FLNK IOC:STREAM:log0

INP IOC:STREAM:log0

VAL

stringin IOC:STREAM:spy

VAL

stringin IOC:STREAM:log2

FLNK IOC:STREAM:log1

INP IOC:STREAM:log1

 Records  IOCs  PV Map  happi  Gateway  Duplicates  Logs

Glob Regex



IOC:ACF:LI:OPSTATE

IOC:ACF:LI:lev1permit

IOC:ACF:Test

IOC:MOTOR:ASYN

IOC:MOTOR:M1MOTOR

IOC:MOTOR:M1MOTOR_able

IOC:MOTOR:M1MOTOR_ableput

IOC:MOTOR:M1MOTOR_twCh

IOC:MOTOR:M1MOTOR_vCh

IOC:MOTOR:M2MOTOR

IOC:MOTOR:M2MOTOR_able

IOC:MOTOR:M2MOTOR_ableput

IOC:MOTOR:M2MOTOR_twCh

IOC:MOTOR:M2MOTOR_vCh

IOC:STREAM:checksum

IOC:STREAM:cmd

IOC:STREAM:info

IOC:STREAM:log0

IOC:STREAM:log1

IOC:STREAM:log2

IOC:STREAM:spy

IOC:TEST:recordname

aliasname1

aliasname2

Results

Part of ioc-test

Archiver

Gateway

Access Security Group

Field table

Raw information

Record links

Figure 4: whatrecord frontend: a record with links.

LCLS
Views for LCLS-Specific tools can be enabled with an

environment variable setting, including a view of happi de-
vices, an LDAP / netconfig settings viewer, and epicsArch
PV listings.

GitHub Actions and ”Offline” Mode
A sample repository [14] is provided to exhibit the ”of-

fline” mode supported by whatrecord.
The offline mode utilizes the whatrecord server in con-

tinuous integration to generate a snapshot of the server infor-
mation. This information then takes the place of a backend
server, requiring only a tarball of JSON in order to populate
the data.

Trying whatrecord
The easiest method to try the frontend alongside the back-

end is with Docker Compose.

$ git clone https://github.com/pcdshub/whatrecord
$ cd whatrecord/docker
$ docker-compose up

After executing the above, wait for a few minutes and then
open http://localhost:8896 in a browser.

The parsing tools can be used directly with a working
Python 3.9+ environment:

$ pip install whatrecord
$ whatrecord --help

The whatrecord source code is available on GitHub [1]
and documentation is available on GitHub Pages [15].

REFERENCES
[1] whatrecord: source code repository,
http://www.github.com/pcdshub/whatrecord

[2] EPICS, http://www.aps.anl.gov/epics/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO08

THMBCMO08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1210

Software

Software Architecture & Technology Evolution

[3] StreamDevice support,
https://paulscherrerinstitute.github.io/
StreamDevice/index.html

[4] Lark: a parsing toolkit for Python,
https://github.com/lark-parser/lark/

[5] sumo: EPICS support module manager,
https://epics-sumo.sourceforge.io/

[6] epicsmacrolib: EPICS-compliant macro handling,
https://github.com/pcdshub/epicsmacrolib

[7] pytmc: TwinCAT PLC Code to EPICS Database Tool,
https://github.com/pcdshub/pytmc/

[8] jq: JSON filter command-line tool,
https://jqlang.github.io/jq/manual/

[9] Bluesky, https://blueskyproject.io/

[10] happi: the LCLS ophyd device database,
https://github.com/pcdshub/happi/

[11] aiohttp: an asyncio HTTP client/server,
https://docs.aiohttp.org/en/stable/

[12] Vue.js, https://vuejs.org/

[13] d3-graphviz,
https://github.com/magjac/d3-graphviz

[14] GitHub Actions and whatrecord sample, https://github.
com/pcdshub/ioc-whatrecord-example

[15] whatrecord: documentation,
http://pcdshub.github.io/whatrecord

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO08

Software

Software Architecture & Technology Evolution

THMBCMO08

1211

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

