
SKA TANGO OPERATOR
M. Di Carlo∗, M. Dolci, INAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy

P. Harding, U. Yilmaz, SKA Observatory, Macclesfield, UK
P. Osório, Atlar Innovation, Portugal

J. B. Morgado, CICGE, Faculdade de Ciências da Universidade do Porto, Portugal

Abstract
The Square Kilometre Array (SKA) is an international

effort to build two radio interferometers in South Africa
and Australia, forming one Observatory monitored and con-
trolled from global headquarters (GHQ) based in the United
Kingdom at Jodrell Bank. The software for the monitor-
ing and control system is developed based on the TANGO-
controls framework, which provide a distributed architecture
for driving software and hardware using CORBA distributed
objects that represent devices that communicate with Ze-
roMQ events internally. This system runs in a containerised
environment managed by Kubernetes (k8s). k8s provides
primitive resource types for the abstract management of
compute, network and storage, as well as a comprehensive
set of APIs for customising all aspects of cluster behaviour.
These capabilities are encapsulated in a framework (Operator
SDK) which enables the creation of higher order resources
types assembled out of the k8s primitives (Pods, Services,
PersistentVolumes), so that abstract resources can be
managed as first class citizens within k8s. These methods
of resource assembly and management have proven useful
for reconciling some of the differences between the TANGO
world and that of Cloud Native computing, where the use
of Custom Resource Definitions (CRD) (i.e., Device Server
and DatabaseDS) and a supporting Operator developed in
the k8s framework has given rise to better usage of TANGO-
controls in k8s.

INTRODUCTION
The Square Kilometre Array (SKA) project has selected

a software framework for the monitoring and control system
called TANGO-controls [1], a distributed middleware for
driving software and hardware using CORBA [2] (Common
Object Request Broker Architecture) distributed objects that
represent devices that communicate with ZeroMQ [3] events
internally. The entire system runs on a containerised envi-
ronment managed by Kubernetes (k8s) [4] with Helm [5]
for packaging and deploying SKA software. In k8s, all
deployment elements are resources abstracted away from
the underlying infrastructure implementation. For example,
a Service (network configuration), PersistentVolume
(file-system type storage) or Pod (the smallest deployable
unit of computing, consisting of containers). The resources
reside in a cluster (a set of connected machines) and share net-
work, storage, computing power and other resources. Names-
paces in k8s create a logical separation of resources within a
∗ matteo.dicarlo@inaf.it

shared multi-tenant environment. A Namespace enforces a
separate network and set of access rights, enabling a virtual
private space for contained deployment. Fundamentally, k8s
uses a declarative “model” of operation that drives the sys-
tem towards the desired state described by user manifests,
with various controller components managing the lifecycle
of the associated resources. Helm provides the concept of a
chart which is a recipe to deploy multiple k8s resources (i.e.,
containers, storage, networking components, etc...) required
for an application to run. The resources are created using
templates so that the chart can adapt generic configurations
to different environments (i.e., the different SKA datacen-
tres). The SKA deployment practices include the heavy use
of standardised Makefiles (i.e., for building container im-
ages, for testing, for the deployment of a chart, etc.) and
Gitlab [6] for the CICD (continuous integration continuous
deployment) practices [7],

SETTING UP A TANGO DEVICE SERVER
IN KUBERNETES

The TANGO-controls framework is middleware for con-
necting software processes, mainly based on the CORBA
standard. The CORBA standard defines how to expose the
procedures of an object within a software process with the
RPC protocol (Remote Procedure Call). TANGO extends
the definition of an object with the concept of a Device that
represents a real or virtual device to control. This exposes
commands (procedures), and attributes (i.e., state) allowing
both synchronous and asynchronous communication with
events generated from attributes. The software process is
called Device Server. Figure 1 shows a module view of the
aforementioned framework.

Figure 1: TANGO-controls simplified data model.

Given the TANGO-controls framework, the steps to set
up a Device Server are the following:

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO06

Software

Software Architecture & Technology Evolution

TH2AO06

1155

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



• deploy the code into a node (i.e., Host, VM, container,
etc...);

• configure the application before running (i.e., set envi-
ronment variables, configuration files, etc...);

• configure any needed resources like persistent storage
or network aspects;

• declare the device(s) in the TANGO database of de-
vices;

• set any needed properties in the TANGO database of
devices (i.e., polling definition for events, etc...);

• start devices in order (if there are dependencies, wait
for each of them to be fulfilled before proceeding).

Without container orchestration, the automation of the
above steps can be complex, depending on the software au-
tomation tool used. With the help of k8s, it is possible to
package the TANGO-controls framework into a set of base
container images so that the final product is a container-
ised application that will run in a container orchestrator. In
SKA, the repository ska-tango-images [8] contains the defi-
nitions of all TANGO-controls components in a set of con-
tainer images together with two helm charts: ska-tango-base
and ska-tango-util. The first one defines the basic TANGO
ecosystem – consisting mainly of the TANGO database –
while the second one is a helm library chart which helps
developers define TANGO device servers through config-
urable template macros. Figure 2 shows how to define a
device server using the ska-tango-util helm chart library –
please note that only a partial set of parameters are shown.

Figure 2: Declarative definition of a device server.

The following code shows an example of a device server
containing two instances (basically two processes) starting
from the same container image.

name: timer-dev-server
function: timer
domain: timer-app
instances: ["counters", "timer"]
image:

registry: artefact.skao.int

image: ska-tango-examples
tag: 0.4.24

pullPolicy: IfNotPresent
entrypoints:
- name: "Timer.Timer"

path: "/app/src/Timer.py"
- name: "Counter.Counter"

path: "/app/src/Counter.py"
server:

instances:
- name: "counters"

classes:
- name: "Counter"

devices:
- name: "srv/counter/minutes"

- name: "srv/counter/seconds"
- name: "timer"

classes:
- name: "Timer"
devices:
- name: "test/timer/1"
properties:
- name: "LOGGING_LEVEL"

values:
- "DEBUG"

livenessProbe:
initialDelaySeconds: 0
periodSeconds: 10
timeoutSeconds: 3
successThreshold: 1
failureThreshold: 3

readinessProbe:
initialDelaySeconds: 0
periodSeconds: 10
timeoutSeconds: 3
successThreshold: 1
failureThreshold: 3

Given the above definition, the helm chart library - ska-
tango-util - will translate it into the following k8s resources:

• a k8s job for the initialization of the TANGO database;

• a service that exposes the application to the network;

• a Statefulset (in k8s this is an object used to manage
stateful applications) which contains:

– a Pod (k8s object that groups one or more con-
tainers into a unit);

– one or more InitContainers (specialized con-
tainers that run before app containers in a Pod) to
resolve the device server dependencies in order
to:

∗ wait for the configuration job to complete
and

∗ wait for device dependencies.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO06

TH2AO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1156

Software

Software Architecture & Technology Evolution



Figure 3 shows the workflow of the start of a device server
in k8s, starting from the install command.

Figure 3: Workflow of Device Server installation using ska-
tango-util Helm chart.

EXTENDING K8S - THE OPERATOR
PATTERN

The above solution to set up a Device Server in Kubernetes
works, but also comes with some challenges. Particularly,
we can highlight:

• creates extra resources to setup the Device Server (i.e.,
the InitContainers to wait for the dependencies);

• leaves behind spent resources in the API (i.e., Job pods
that have completed do not get deleted immediately);

• CrashLoopBackoff (happens when a container fails to
start, taking exponentially longer to restart the failed
container) of InitContainers can compound, making the
startup of an environment with multiple Device Servers
take very long;

• wastes API resources with all the pooling that needs
to happen to wait for dependencies, either the TANGO
database or other devices;

• the cluster might end up with multiple versions of Ku-
bernetes resources created by ska-tango-util, as there
is no centralised control over the user chart versions.

To solve these challenges, it is possible to use the k8s
operator pattern, which aims to capture the key aim of a
human operator who is managing a service or set of ser-
vices. Human operators who look after specific applications
and services have deep knowledge of how the system ought
to behave, how to deploy it, and how to react if there are
problems [9].

Technically speaking, the operator:

• extends the Control Plane to describe custom be-
haviours;

• uses Custom Resource Definitions (extending the API)
to create new manageable resources and

• uses the control loop pattern (a non-terminating loop
that regulates the state of a system) to reconcile the
resources to their desired state.

SKA TANGO Operator
The SKA TANGO Operator is a k8s Operator capa-

ble of managing TANGO resources (DeviceServer and
DatabaseDS), controlling their lifecycle within the k8s na-
tive control/event loop. Specifically:

• allows for a lighter deployment, due to avoiding the
creation of InitContainers to resolve dependencies;

• optimises the startup time for Device Servers, as the
operator can directly tap into the TANGO environment
and retrieve information on dependent devices and the
TANGO host itself and

• relieves the Kubernetes API of the management of extra
resources (and their disposal).

Together with solving the above challenges, the main ratio-
nale to introduce the operator is to help developers to think
directly in terms of TANGO-controls and not in terms of k8s
resources, as those are components relevant to the platform
and not the application. Introducing the operator also allows
automating many of the tasks a human would do to operate
a TANGO resource, in a quicker and more reliable manner.
It also facilitates the collection of custom metrics on the
CRDs, giving information on the system in a TANGO do-
main instead of the k8s domain (i.e., Device Servers instead
of StatefulSets) therefore making TANGO components
first-class citizens of k8s.

The resources added with the SKA TANGO Operator
are the databaseds.tango.tango-controls.org and
deviceservers.tango.tango-controls.org. The
workflow for these is represented in Fig. 4 and Fig. 5.

One of the main advantages – together with the aforemen-
tioned aspects – of using the SKA TANGO Operator is the
ability to extract very detailed information in the form of
Prometheus [10] metrics and display them in Grafana [11].
Figure 6 shows a deployed application in SKA and general
statistics about the start-up time of a Device Server. Figure 7
shows a more detailed view of the timing information, show-
ing an example of how much time a specific server waits for
the configuration to happen or for a particular dependency
to be available. Figure 8 shows another refinement for the
timing information, showing what the operator is doing for
a selected device server.

CONCLUSION
In this paper, we discussed an approach to make k8s

directly manage the TANGO-controls framework Device

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO06

Software

Software Architecture & Technology Evolution

TH2AO06

1157

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 4: DatabaseDS workflow.

Figure 5: Device Server workflow.

Servers. This method allows for a number of optimizations,
such as fast initialization time and startup reliability. The
configuration of any device server is delegated to a spe-
cialised service so that less resources are used (in terms of
memory, CPU, storage and even network utilization). It ba-
sically realises an abstraction of TANGO domain-specific
components from the platform ones. It also provides very

Figure 6: Device Server start up time.

Figure 7: Device Server detail timing information.

Figure 8: Device Server detail operator statistics.

detailed information in the form of Prometheus metrics so
that it is possible to present those on a Grafana dashboard.
Furthermore, it is important to consider an aspect that too
often is underestimated in the context of monitoring and
control system, such as security. This is an aspect that, for
now, belongs to future work, but it is worth mentioning that
with technologies such as Linkerd [12], it is possible to se-
cure the communication of the Device Servers within and
between k8s clusters.

Linkerd
Linkerd is a security focused service mesh that provides

a lightweight proxy that is attached as a SideCar to Pods.
This captures in and outbound traffic and adds encryption/de-
cryption, policy controls and traffic monitoring and logging.
Linkerd can be used both inside a Cluster and between Clus-
ters, and can provide an end to end security solution for the
TANGO-controls hierarchy. This can be achieved without
modifications to the underlying application. Likerd, can also
be used for non-TANGO traffic (as long as it uses the TCP
protocol), whenever retrofitting mTLS presents a sizeable
effort.

Zero Trust Networking and Securing Control Sys-
tems

Zero Trust Architecture (or a Zero Trust Security Model
[13]) is the principle of not implicitly trusting interactions be-
tween users, devices and services within a networked topol-
ogy, and instead implementing steps to verify all connec-
tions. This approach acknowledges the drift of the modern
networked environment towards a state where the traditional
controlled network perimeters have become porous due to
the highly connected nature of the working environment

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO06

TH2AO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1158

Software

Software Architecture & Technology Evolution



and the variety of actors that require varying degrees of ac-
cess to systems throughout any organisation. For example:
a developer could work from a public Wi-Fi in an airport
lounge, publish code and deploy critical services within an
Observatory over VPN. A Telescope Operator could visit
colleagues in another institution, discuss and amend observa-
tion details carried out over an Eduroam connection back to
the Observatory. With these changes to what constitutes the
secure boundary of modern systems, and in order to improve
the overall security of system operations, it is necessary to
rethink how we can secure highly connected systems when
the chances of the traditional outer network perimeter being
compromised is now greatly increased. This change in the
status quo is demonstrated by recent attacks that have been
carried out on research projects (recently ALMA [14], and
NOIRLab [15]). One way of addressing these threats is to
apply the principles of ZTA to key parts of the infrastructure,
such as the Controls Systems, Monitoring and Logging. By
taking this approach, it will reduce the inner attack surface
area, and even when a system is compromised, the ability to
still retain trust in the system observability components is
more likely to remain - something that is not possible in a
compromised perimeter based security model. Linkerd is
one such tool that can be used to provide a ZTA oriented
inner layer of protection throughout a system landscape, that
can encompass modern containerised applications as well
as legacy application suites.

ACKNOWLEDGEMENTS
This work has been supported by the Italian Government

(MEF - Ministero dell’Economia e delle Finanze, MIUR -
Ministero dell’Istruzione, dell’Università e della Ricerca).

REFERENCES
[1] Tango-controls framework,
https://www.tango-controls.org/

[2] CORBA, https://www.corba.org/

[3] ZeroMQ, https://zeromq.org/

[4] Kubernetes, https://kubernetes.io/

[5] Helm, https://helm.sh/

[6] Gitlab, https://about.gitlab.com/

[7] M. Di Carlo et al., “Ci-cd practices at SKA”, Proc. SPIE:
Software and Cyberinfrastructure for Astron. VII, vol. 12189,
Aug. 2022. doi:10.1117/12.2620526

[8] Ska-tango-images repository, https://gitlab.com/
ska-telescope/ska-tango-images

[9] Kubernetes Operator Pattern, https://kubernetes.io/
docs/concepts/extend-kubernetes/operator/

[10] Prometheus, https://prometheus.io

[11] Grafana, https://grafana.com/

[12] Linkerd, https://linkerd.io/

[13] Linkerd, https://en.wikipedia.org/wiki/Zero_
trust_security_model

[14] Linkerd,
https://www.eso.org/public/announcements/
ann22014/

[15] Linkerd,
https://noirlab.edu/public/announcements/
ann23022/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO06

Software

Software Architecture & Technology Evolution

TH2AO06

1159

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


