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Abstract
At CERN, work has been undertaken since 2019 to tran-

sition from running Accelerator controls software on bare
metal to running in an orchestrated, containerized environ-
ment. This will allow engineers to optimise infrastructure
cost, to improve disaster recovery and business continuity,
and to streamline DevOps practices along with better secu-
rity.

Container adoption requires developers to apply portable
practices including aspects related to persistence integration,
network exposure, and secrets management. It also promotes
process isolation and supports enhanced observability.

Building on containerization, orchestration platforms
(such as Kubernetes) can be used to drive the life cycle
of independent services into a larger scale infrastructure.

This paper describes the strategies employed at CERN to
make a smooth transition towards an orchestrated container-
ised environment and discusses the challenges based on
the experience gained during an extended proof-of-concept
phase.

BACKGROUND

The CERN Technical Network
CERN operates several distinct networks serving different

purposes. Two of them will be referenced during this paper:

1. The General-Purpose Network (GPN), used for a large
number of non-accelerator-related operations.

2. The Accelerator Technical Network (TN), which can
be seen as a separate protected network, used solely for
on-line accelerator operations.

The TN was created in the late 1990s as a private, inde-
pendent physical network, dedicated to the operation of the
CERN accelerator complex. In 2005, the CNIC (Computing
and Network Infrastructure for Controls) working group [1]
was established with the goal of reviewing, proposing and
putting in place relevant network and security measures to
better protect the TN. For security reasons, the provision of
central IT services on the TN is an ever-growing challenge,
in particular with the emergence of cloud-based licensing
policies and remote hosted solutions.
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The CERN Accelerator Data Centre

The CERN Accelerator Data Centre (ADC) is located
on the French CERN site in Prévessin-Moëns, next to the
CERN Control Centre (CCC) [2]. It hosts around 500 high-
performance and high-availability servers, currently running
the CERN CentOS7 operating system. In 2023, a project
was launched to transition towards RHEL9 in 2024, as the
future operating system for accelerator controls.

Since the dawn of the Large Hadron Collider (LHC) era,
the ADC operates as a pure bare-metal infrastructure, each
server being attributed to equipment groups in charge of the
control software of dedicated accelerator sub-systems (e.g.
cryogenics, radio frequency, beam instrumentation, etc.)

While offering a lot of flexibility to the numerous software
development teams, this ADC model is no longer sustainable
for reasons such as the lack of optimization and under use
of the global computing power, security aspects, a plethora
of operational software DevOps practices, wide-spread de-
pendencies towards third-party software solutions, and, last
but not least, a lack of agility in terms of evolution.

Platform Engineering

Platform engineering in the context of Kubernetes in-
volves designing, implementing, and maintaining the under-
lying infrastructure to support containerized applications.
This includes configuring and optimizing Kubernetes clus-
ters, managing container orchestration, and ensuring high
availability and scalability. It enables development teams
to focus on building and deploying applications efficiently
within the Kubernetes ecosystem. It also allows system
administrators to abstract the underlying infrastructure, mak-
ing tasks like operating system updates, server hardware
replacement, and network changes nearly transparent to the
applications and services running on the platform. This
abstraction provides a layer of insulation between the infras-
tructure and the workloads, promoting consistency and ease
of management across diverse environments.

This approach and added value may come at the expense
of increased complexity and a steeper learning curve for
development, DevOps and administration teams, particu-
larly in terms of grasping container orchestration concepts
and addressing the associated challenges. System adminis-
trators must exercise particular care, to guarantee security
and enforce updates, especially during the periodic CERN
accelerator Technical Stops.
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CERN’S JOURNEY TOWARDS A
KUBERNETES-BASED ACCELERATOR

CONTROL SYSTEM
Goal and strategic drivers

The goal is to deploy Kubernetes on the TN, then adapt
all relevant controls software systems to run on this platform,
instead of bare metal, no later than during CERN’s Long
Shutdown 3 (2026-2029). The main strategic drivers for
doing this, are, in order or importance:

1. To be better equipped for disaster recovery and busi-
ness continuity, by becoming more agile in terms of
hardware management, software deployment and vali-
dation.

2. To optimise infrastructure resources in terms of cost
and energy.

3. To streamline and align (as much as possible) DevOps
practices (both internally and with industry). This is
expected to reduce the costs associated with the diverse
in-house DevOps practices of today. It will also fa-
cilitate the movement of people working on various
Controls sub-systems, and the on-boarding of newcom-
ers by adhering to modern, industry practices.

CERN Cloud Offering
A CERN Cloud offering [3], provided by the IT depart-

ment, already exists since several years and consists of:
• OpenStack as the underlying multi tenancy layer.
• A Kubernetes-as-a-service service, similar to that avail-

able from all the major public cloud providers.
• A Registry Service, based on the Harbor product.
• Add-ons to Kubernetes, offering integration with

CERN identity management, monitoring, networking,
and storage.

The CERN Cloud is only available on the GPN and there-
fore not usable for the accelerator controls, which run ex-
clusively on the TN. A proof of concept (PoC) project was
therefore launched to overcome this limitation.

Kubernetes PoC for Accelerator Controls
The aim of the PoC was to deploy an IT-managed Kuber-

netes solution on the isolated TN and to onboard a limited,
but representative, number of controls software use cases,
to:

• Establish a clear understanding of the technical chal-
lenges to be overcome to have Kubernetes on the TN.

• Gain experience using the functionalities of an orches-
trator and understand the impact on future Controls
System Administration Team practices and responsibil-
ities.

• Gain a better understanding of the effort that would
be required in terms of adapting application software
DevOps practices.

In terms of infrastructure, several key aspects were ad-
dressed, such as the network topology, monitoring and log-
ging, security and access control, storage, and performance.
The PoC highlighted important differences with respect to
the standard IT Kubernetes-as-a-service setup, leading to
recommendations for aspects to be further analyzed, in or-
der to transition towards a production-ready platform for
accelerator control.

Objectives within the PoC included:
• The setup should be fully hosted on the TN and should

remain operational with no connectivity to or from the
GPN.

• The setup should consist of computing resources lo-
cated mainly in the ADC, supplemented by additional
resources located in CERN’s central IT Data Centre
ITDC [4] (physically located on the Swiss CERN site),
to support Business Continuity and Disaster Recovery
(BC/DR) requirements.

• There should be no critical dependencies on services
not hosted on the TN.

• Periodic tasks such as image replication or certificate
generation and renewal may require GPN access, but
should not prevent normal service operation.

In the following paragraphs, the main Kubernetes compo-
nents and associated tools will be described.

Control Plane
The control plane is responsible for making global deci-

sions about the cluster, such as scheduling or responding to
events. The main components include:

• apiserver: exposes the Kubernetes API and acts as the
front end to the control plane.

• etcd: a consistent and highly available key value store,
acting as backing store for all cluster data.

• scheduler: watches resources for assignment.
• controller-manager: a daemon that embeds the core

control loops shipped with Kubernetes.
All control plane components can be deployed in a highly

available mode, with multiple replicas spread across multiple
nodes to prevent single points of failure.

Worker Nodes
In the PoC, it was decided to operate Kubernetes worker

nodes as Virtual Machines (VM). VMs can be easily pro-
visioned and scaled as needed, making it simpler to add or
remove worker nodes based on workload requirements. This
flexibility promotes efficient resource utilization.

Each node in the cluster runs a set of components respon-
sible for running pods and providing the Kubernetes runtime
environment. The main components include:

• kubelet: ensures that containers are running in a pod
when scheduled.

• kube-proxy: a network proxy implementing the Kuber-
netes Service concept and maintaining a set of network
rules on the nodes for pod communication.

• container runtime: the software responsible for running
containers, with support for multiple options imple-
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menting the CRI (Container Runtime Interface) such
as containerd or CRI-O.

Networking
Kubernetes networking addresses the following require-

ments:
• Containers within a pod can communicate with each

other via loopback, as they share the same networking
namespace.

• Cluster networking provides communication between
different pods.

• The Service API allows exposure of an application
running in pods so that it is reachable from outside of
the cluster, with Ingress provisioning extra functionality
for HTTP and Websocket networking (Layer 7).

• Services can also be configured to only be exposed
within the cluster.

Every pod gets its own unique cluster-wide IP address,
avoiding the need to create explicit links between pods. In
most cases, users never need to deal with mapping container
ports to host ports. In a similar way, each service also gets an
assigned IP address which can be either local to the cluster
or managed by an external load-balancing service, allowing
external access via Layer 4 (L4). In both cases, Kubernetes
creates DNS records that can allow contact with consistent
DNS names instead of IP addresses. The networking is
abstracted by the Container Networking Interface (CNI) for
which multiple implementations are available with slightly
different features. Examples include Flannel, Calico and
Cilium.

For the PoC, a new ”tn1” network region was set up with
two Availability Zones (AZ), corresponding to the aforemen-
tioned ITDC and ADC locations. These AZs are exposed
to end users and can be used to create clusters with node
groups in each AZ for improved availability. This informa-
tion is also exposed to the Kubernetes clusters and can be
exploited by workloads to spread replicas across different
failure domains, using ”topology constraints”.

Container Registry
The CERN IT department provides a registry service for

containers, Helm charts [5], and any other OCI artifacts. It
relies on the upstream Harbor Project [6] (a Cloud-Native
Computing Foundation - CNCF [7] - graduated project) and
adds the following features to the basic artifact storage and
handling:

• Multi-tenancy and Role-Based Access Control (RBAC)
• Project quotas
• Security and vulnerability analysis with external scan-

ner integration
• Content signing and validation
• Automated replication across OCI registries (also with

non-Harbor registries)
• Pull-through caches to external registries
• An extensible API and Web UI with external scanners
As part of the PoC, a new instance of the registry ser-

vice was deployed inside the TN, and made available to

both Kubernetes and other, non-orchestrated, containerized
workloads used within the accelerator control system.

To comply with the TN policy and operational concerns
regarding the container image lifecycle, a set of automated
replication rules was defined, where all new container image
tags pushed to the GPN registry are, transparently to users,
automatically replicated to the TN instance. This means in
practice, that in order to make a container image available
on the TN via the new registry service, it must first be made
available in the GPN registry, from where it can be repli-
cated to the TN. Such replication of images is only done on
demand and via an approval process. To support this process,
the replication functionality is integrated with a dedicated
system that is used to manage which images should be made
available to the accelerator control system. This provides
an API and web-application, via which, users are able to
request new images to be made available on the TN, and
refresh pre-approved images at any time.

PILOT PROJECTS AND APPLICATIONS
Several representative accelerator control system applica-

tions were selected as pilot services to run on the new PoC
platform. The software development teams adapted their
applications and DevOps processes to leverage the new plat-
form. Regular meetings were held between all participants,
to share progress and problems, exchange knowledge, and
agree on next steps. For each pilot service, an effort was
made to document the changes made to configuration and
deployment aspects, the integration needed with external ser-
vices, and any notable differences with respect to the current
bare-metal-based deployments. The intention of this was
to build up a document defining best practices required by
other controls software services in the future, in the context
of the eventual move of all applicable applications to run on
Kubernetes. In the following paragraphs, some of the most
representative use cases will be described and the challenges
that needed to be addressed will be discussed.

Controls Middleware (CMW)
The Controls Middleware (CMW) [8] powers the client-

server communications within the CERN accelerator control
system. It uses an underlying protocol known as RDA3 for
exchanging accelerator device data.

The following tasks and tests were initially planned:
• Run the CMW Directory Service and RDA3 servers

(written both in C++ and Java) on Kubernetes and val-
idate their seamless interactions with RDA3 clients
running inside and outside the Kubernetes cluster.

• Validate the correct functioning of rolling upgrades and
fail-overs of the CMW Directory Service.

• Test the feasibility of making rolling upgrades and fail-
overs of RDA3 clients and servers, and identify any
limitations in the current CMW implementation.

• Explore the use of Kubernetes services and APIs for
deployment, monitoring, logging, etc. and assess which
in-house developed DevOps services could be replaced.
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Configuration and Deployment The CMW directory
service was already running in a clustered and redundant con-
figuration outside of Kubernetes, using the JGroups messag-
ing framework to manage communication between replicas
of the service. It was already containerized for integration-
testing purposes; but before the PoC, this container image
had never been used inside a Kubernetes cluster.

One significant challenge was to get JGroups to locate and
communicate with the other peers in the Directory Service
cluster. As JGroups requires incoming and outgoing IP
addresses to be identical, it was not possible to configure
static lookup of replicas with one Kubernetes service per
replica, because incoming IPs are pod IPs and outgoing IPs
are service IPs. Fortunately, a JGroups plugin, KUBE_PING
[9], handles peer autodiscovery inside a Kubernetes cluster.

The CMW Directory Service achieves redundancy with
client-side load balancing. This means that clients need to
access each replica separately, and not through a server-side
load-balancer. To achieve this on Kubernetes without heavy
changes to the application architecture, a first approach was
tried using a separate Kubernetes deployment per replica.
However, this prevented the use of Kubernetes rolling deploy-
ment features. On the other hand, configuring Kubernetes
services to only route traffic to the local node replica (ex-
ternalTrafficPolicy: Local) gives slow feedback to clients
that a replica is not available. This is because connection at-
tempts need to time-out, before clients notice that the replica
is down and try to connect to another replica. A simple so-
lution was found by leveraging the host networking feature
of Kubernetes, which is similar to our current bare-metal
offering. All of the above networking approaches rely on
controlling on which nodes the replicas are scheduled, which
is not standard Kubernetes practice. This was achieved
with a simple service-specific node tag (cmw.cern.ch/cmw-
directory-server) and a corresponding nodeSelector. The
CMW Directory Service is a Spring Boot application, which
comes with pre-existing liveness and readiness probes which
made the creation of a Kubernetes Deployment a trivial task
and enabled rolling upgrades immediately. ArgoCD was
installed and configured to synchronise the cluster configu-
ration with the Git repository. A first approach with Helm
charts was explored, but for simplicity, Kubernetes templates
were chosen as a solution.

Challenges New dependencies have been introduced
into the Git service, which is hosted on the GPN. As a result,
ensuring the availability of the Git repository has become a
critical concern for the TN-based deployment model. How-
ever manual configuration changes can be applied to the
Kubernetes cluster in case of an emergency to mitigate net-
work or Git service incidents. The CMW Directory Service
also requires the injection of the CERN Oracle database
configuration (tnsnames.ora managed by the CERN IT de-
partment) as a Kubernetes configmap to keep it up-to-date.

Post-Mortem Analysis (PMA)
The Post-Mortem service is a part of the mission-critical

CERN Machine-Protection system. It collects information
from many accelerator devices and other systems in the event
of a beam dump or operational issue, then a Post-Mortem
Analysis (PMA) sub-system automatically analyses the data,
using analysis modules developed by domain experts. Af-
terward, the PMA system provides the operation teams and
equipment experts with the analysis results. The PMA output
indicates if it is safe to resume operations and this informa-
tion is consumed by interlock systems which can prevent
beam injection. Five PMA systems are used daily by LHC
and Super Proton Synchrotron (SPS) operations and each
has a master process (the PMA “Engine”), that drives the
execution of several analysis modules, in the right order. To-
day, a PMA system is a monolithic application, in the sense
that the PMA engine and the analysis modules all run within
the same JVM process. This has two consequences. Firstly,
a single misbehaving analysis module can kill the whole
process. Secondly, whenever a domain expert provides a
new version of their analysis module, the whole PMA appli-
cation needs to be manually rebuilt and redeployed by the
engineers responsible for PMA. The main goals for this use
case within the PoC were to:

1. Investigate the possibility of running analysis modules
in separate processes on Kubernetes.

2. Provide a self-service solution for PMA analysis mod-
ule developers (i.e. domain experts) to update their
analysis modules.

Configuration and Deployment A major part of the
development effort focused on splitting the monolithic im-
plementation into a distributed architecture. This involved
isolating analysis modules and exposing them over the net-
work. It also required redesigning the analysis workflow, and
in particular, the interactions between the analysis engine
and the analysis modules. Unlike the original monolithic
implementation, the updated analysis modules now receive
a single, self-contained request with all of the information
needed for the analysis. They then stream events back to the
engine, as the analysis progresses. This allows to move all
states from the analysis modules to the engine, which in turn,
enables rolling updates of the now stateless analysis modules.
This significant architectural change also helps to achieve the
aforementioned goal of domain experts being able to deploy
new versions of their analysis modules in a self-service man-
ner. The new ”self-service” module (see Fig. 1) is based on
Gitlab CI pipelines. Gitlab repositories with analysis mod-
ules now have a new CI configuration which, when triggered,
builds a new container image containing the analysis module.
This container image is replicated across various container
registries, and made available on the TN. Finally, the CI
pipeline deploys the new analysis module into the staging
environment of the PMA application. Thanks to this, users
are able to deploy and validate their changes autonomously,
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yet in a safe way, without any intervention from the PMA
system maintainers.

Figure 1: The ”self-service” PMA module architecture.

Challenges While this new Kubernetes-based PMA im-
plementation has many advantages and solves the afore-
mentioned goals, it also brings some additional challenges.
Firstly, the new approach is more complex than the previ-
ous bare-metal deployments, where services run as simple
Java processes, on a dedicated machine, and can be moni-
tored and diagnosed with standard Unix and Java tools. The
large number of components involved in Kubernetes makes
troubleshooting more complex, especially when it comes to
network related issues. The way that Kubernetes networking
works also does not play well with JMX (Java Management
eXtensions), a Java-specific tool which allows engineers to
both monitor and manage Java processes at runtime. How-
ever, Kubernetes-compatible drop-in replacements exist for
both metric acquisition (Prometheus [10] JMX exporter or
Spring Boot actuator) and management operations (Jolokia,
Hawtio).

It also takes longer to deploy a new version of the applica-
tion compared to the bare-metal setup, due to additional CI
jobs and image replication delays (2-3 minutes) which could
probably be optimized. Running CPU-bound workloads on
virtualized nodes incurs a 30% performance penalty, and
the performance can vary widely over time. Preliminary
tests showed that running on bare-metal Kubernetes nodes
(as opposed to running on virtual nodes) yields performance
much closer to pure bare-metal deployment.

Controls Configuration Data API (CCDA)
The Controls Configuration Service (CCS) [11] central-

izes the configuration of the entire control system. Its CCDA
(Controls Configuration Data Access) API [12] provides,
amongst other things, REST-based services to retrieve con-
trols configuration data. The whole CCDA system is based
on a classical three-tier architecture, consisting of a client
layer, a server layer and a database layer. The server layer
consists of a Spring Boot application hosting stateless CCDA

service instances to handle incoming user requests. A Spring
Gateway application acts as the main entry point, redirecting
user requests to appropriate server API instances. Each de-
ployed API instance registers itself with Eureka, which main-
tains a registry of all available API instances and provides
service discovery functionality. Eureka also provides load
balancing to optimise traffic. Requests sent to the CCDA
service are either to retrieve or manipulate data from an
underlying Oracle database.

Configuration and Deployment The Kubernetes clus-
ter architecture is set up with one service per business ap-
plication (i.e the CCDA). To replicate the existing produc-
tion bare-metal setup, two pods have been initiated for each
application. These pods are where the CCDA service in-
stances run, handling incoming requests, which are properly
routed to them based on suitable rules on the ingress node.
A Zipkin [13] service was also integrated to gather CCDA
telemetry data. Again, routing rules were configured in the
ingress node, this time to make Zipkin accessible from the
network outside of the Kubernetes cluster.

Helm was used for the deployment, because multiple ser-
vices (e.g. CCDA and Zipkin) have the same application
structure making it possible to standardise the configuration
via templates. The API server instances are automatically
deployed on the Kubernetes cluster via a GitLab CI pipeline.
For this purpose, the Kubernetes configuration and other
passwords are being saved as GitLab variables. The pipeline
first builds the container images, pushes them into the Git-
Lab registry and then deploys the application on the cluster
using Helm.

Integration with External Services The CCDA ser-
vices use a logger module, which is included in the container
image as part of the deployed Jar. Logs are then sent to an
external Elasticsearch service and can be visualised through
Kibana [14] dashboards. The Oracle database is managed
outside of the Kubernetes cluster, but the pods were able to
connect to it seamlessly, without requiring any further setup.

Challenges While response times were similar between
bare metal machines and Kubernetes, some slight differences
were observed in the number of requests that timed out. The
higher number of requests that took longer than expected
can be attributed to the test cluster having less computing
resources than the bare metal machine. Better performance
would be expected when deploying to a cluster with more
resources available. Access to logs and network debugging
need more specialized tools and understanding within the
Kubernetes ecosystem and CCS service managers need to
embrace the new approaches. The CCDA also needs to be
available on the GPN, something which is not yet possible
without a system administrator intervention.
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FUTURE WORK REQUIRED TO REACH
PRODUCTION

The PoC was highly successful resulting in:

• The deployment and stable running of multiple Kuber-
netes clusters on the TN.

• Adaptation deployment and running of several represen-
tative controls software services on the aforementioned
clusters.

• Valuable experience gained in this new eco-system,
from both system administration and developer per-
spectives, including changes to DevOps practices.

• Comprehensive documentation of adaptations required
within the control system portfolio in order to use and
profit from the power of Kubernetes.

• Identification of areas requiring further investment, in
order to take the next step of transitioning from a PoC
to a production-ready platform.

The following paragraphs will elaborate on the last item
in the above list, by describing areas where further work is
required or on-going.

Storage The Kubernetes clusters have both local storage
(volatile) and persistent storage. The local storage is using
the cluster nodes, with no guarantees of resilience. The per-
sistent storage relies on an NFS (version 3) backend server,
managed by the accelerator controls system administrators.
Investigations are on-going to study hyper-converged solu-
tions such as OpenEBS [15] or Longhorn [16] to improve
NVMe usage (i.e. by dropping RAID1 support) and reduce
costs.

Monitoring and Logging The Control Plane cluster
includes its own Prometheus instance that collects metrics
from all nodes (physical and virtual), as well as availabil-
ity metrics for the different Control Plane components of
OpenStack and the Kubernetes Service. An add-on is pro-
vided for end-user managed clusters that sets up a dedicated
Prometheus instance. By default all metrics exist and are
kept only inside the cluster. They are accessible to everyone
with cluster access. Additional work is foreseen to allow the
centralized collection, aggregation and long-term storage
of all metrics, in the pre-existing accelerator control system
monitoring service.

Hardware Infrastructure Considerations An inves-
tigation is on-going into the management of all server
metadata (including location and network topology) using
OpenDCIM [17]. Quad Servers (4 systems in 2U rack space),
are the standard hardware infrastructure used in the ADC
for running controls software service. Spreading replicas of
Kubernetes nodes across multiple quads, and across multiple
racks would minimise the impact of hardware interventions
on the corresponding Kubernetes deployed services.

Although end users should remain unaware of the under-
lying servers running Kubernetes clusters, there is still a
case for keeping bare-metal nodes within clusters to address
performance challenges and to accommodate specific hard-
ware requirements like GPUs or accelerator timing system
receiver cards.

Access Control Authentication and authorisation via
OIDC/OAuth2 is available on the GPN via the CERN Single-
Sign-On (based on Keycloak [18]) and a custom application
portal developed at CERN. Roles can be used to define Role-
Based Access Control (RBAC) policies to manage access to
the different resources and APIs. This feature has not been
configured during the PoC phase but will be soon investi-
gated.

It is expected that the TN infrastructure will benefit from
ongoing developments by the IT department for the GPN-
based Kubernetes clusters. Of particular relevance are run-
time checks in all clusters with tools like Falco [19], which
allow to define policies and alerts regarding: unexpected pro-
cesses and shells launched in existing containers; unexpected
inbound or outbound network requests etc.

Credentials And Secrets Management A dedicated
sub-project is foreseen, to analyse, prototype, and then im-
plement a secure vault service to provide secrets and key
rotation to Kubernetes clusters. It is expected that this will
also support legacy, non-Kubernetes deployed service and
configuration management tools.

Other Cyber-Security Considerations By design, Ku-
bernetes solves many cyber security challenges found in
non-orchestrated environments (i.e. container isolation, re-
source segregation and scaling, secret management etc...).
However, it also introduces new potential risks:

• Visibility of dynamic resources : As resources such as
pods, storage and logs can come and go within a cluster
dynamically, it can become more difficult to track and
monitor any related problematic or malicious activity.

• Misconfiguration and cluster-level privilege issues:
The powerful declarative nature of cluster configuration
can, in certain cases, introduce misunderstandings or
leave room for interpretation that results in increased
risk exposure. For instance, should a certain environ-
ment variable rather be handled as a secret? Should
a certain service account be given the privileges to
control CPU consumption of a given process?

• Supply-chain security : Containerization brings the
opportunity of having a minimal number of images for
the different services and applications, reducing signifi-
cantly the number of packaged dependencies and with it,
the potential attack vectors. A centralized registry also
improves the ability to identify and track vulnerable ap-
plications, when compared to traditional deployments.
Further exploration of the growing ecosystem around
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supply chains for containerized applications is a unique
opportunity in this area.

Out of the three areas of risks listed above, securing the
supply chain is the one that does not really fit in the mandate
of cluster infrastructure administrators [20]. In the context
of accelerator controls (and not only at CERN), the detection
and removal of a threat present in an operational Kubernetes
cluster image can only be delegated with safe certainty to the
application developers that produce the image. Software Bill
Of Materials (SBOM) standards offer a common language
to everyone involved to produce a complete inventory of
operational software. The usage of SBOM tools is a clear
strategy towards increased transparency, accountability and
compliance. While SBOM usage is still in its initial phases
at CERN, it will undoubtedly be required in the near future
to deploy containers to operational Kubernetes clusters on
the TN.

CONCLUSION
Overall, the PoC resulted in a successful deployment of

several accelerator controls applications and services, run-
ning on the Kubernetes orchestrated container platform in-
stalled in the CERN Accelerator Data Centre and connected
to the Technical Network.

Work on the pilot projects within the PoC activity, high-
lighted the opportunity to streamline software DevOps prac-
tices and remove dependencies on in-house developed De-
vOps solutions. The pilots also led to ways of simplifying
controls software service deployments and upgrade schedul-
ing, as well as increasing resilience.

The main challenges reported included a steep learning
curve, linked to the complexity brought by the additional
layers and the work required to integrate with existing de-
bugging and troubleshooting tools.

Aspects such as robust Secret Management and use of
modern network concepts on the Technical Network need to
be implemented in order to have a common viable solution to
run all CERN controls software services on the Kubernetes
platform.

The next step on the journey has already started, and work
is on-going to address the open points from the PoC and
prepare a production ready platform by the first half of 2024.
The subsequent steps will be to plan and then carry out
the adaptation and migration of all of the controls software
services towards the new Kubernetes platform, over the next
five years.
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