
HIGH AVAILABILITY ALARM SYSTEM
DEPLOYED WITH KUBERNETES

J. Bellister, T. Schwander, T. Summers
 SLAC National Accelerator Laboratory, Menlo Park, USA

Abstract
To support multiple scientific facilities at SLAC, a mod-

ern alarm system designed for availability, integrability,
and extensibility is required. The new alarm system de-
ployed at SLAC fulfils these requirements by blending the
Phoebus alarm server with existing open-source technolo-
gies for deployment, management, and visualization.

To deliver a high-availability deployment, Kubernetes
was chosen for orchestration of the system. By deploying
all parts of the system as containers with Kubernetes, each
component becomes robust to failures, self-healing, and
readily recoverable.

Well-supported Kubernetes Operators were selected to
manage Kafka and Elasticsearch in accordance with cur-
rent best practices, using high-level declarative deploy-
ment files to shift deployment details into the software it-
self and facilitate nearly seamless future upgrades. An au-
tomated process based on git-sync allows for automated re-
starts of the alarm server when configuration files change
eliminating the need for sysadmin intervention.

To encourage increased accelerator operator engage-
ment, multiple interfaces are provided for interacting with
alarms. Grafana dashboards offer a user-friendly way to
build displays with minimal code, while a custom Python
client allows for direct consumption from the Kafka mes-
sage queue and access to any information logged by the
system.

INTRODUCTION
To assist in the commissioning of the upgrade to the

Linac Coherent Light Source (LCLS-II) at SLAC, an up-
grade to the alarm system was proposed. In performing this
upgrade there were several main priorities. First is a system
which would be easy to work with for end users. Both add-
ing new devices to be monitored, as well as interacting with
alarms that are surfaced should be as straightforward as
possible. We also wanted a system that had near constant
uptime, as it would be monitoring multiple critical facili-
ties across the lab. Finally, it was important to adhere to
current best practices around alarm management and sys-
tem deployment as much as possible. To that end we as-
sessed the current status of various alarm management sys-
tems as well as deployment options.

The Phoebus alarm server [1] met most of our require-
ments so we chose to base our system on it, thus eliminat-
ing the need to reinvent the wheel for basic alarm logic and
functionality. For the deployment process Kubernetes [2]
was settled on for orchestration of the system. Using these
technologies brings our system in line with current best
practices, while meeting our goal of high availability and

performance. Further details of the deployment process
follow.

ALARM SERVER
Since the Phoebus alarm server meets most of our re-

quirements, only a few site-specific changes were made to
it prior to deployment. Two modifications of note are to
allow the same process variable (PV) to appear along mul-
tiple branches of the alarm tree, and a way to make it easier
for an alarm server to reload when its underlying configu-
ration file has changed. This allows for an automated con-
tinuous deployment process in which user changes to alarm
configurations can be automatically incorporated into run-
ning alarm servers.

 The main functionalities of handling alarm logic and
translating changes in EPICS alarm severities into Kafka
[3] messages remain unchanged. As depicted in Fig. 1 be-
low, the alarm server monitors PVs from an EPICS source,
in this case a gateway. Any relevant changes are translated
to Kafka messages and stored in the proper alarm topic. All
clients to the system read from the Kafka queue.

Figure 1: Simplified flow diagram of alarm data.

ALARM LOGGER
The other main functional component of the system is

the Phoebus alarm logger. This records a history of alarms
and actions taken on them, and persists this history into an
Elasticsearch [4] data store.

Our deployment also provides the ability to use Loki [5]
as a data store instead of Elasticsearch. This is handled by
using a simple python application that reads data from
Kafka and pushes it to Loki. Since many systems at SLAC
already use Loki for log storage, providing this flexibility
allows users the choice of where to persist data, and more
easily integrate it with the data storage of other applica-
tions.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO02

TH2AO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1134

Software

Software Architecture & Technology Evolution

Figure 2: Diagram of the components deployed into the Kubernetes cluster. Multiple replicas of each component are
running, while clients outside the cluster are able to access the data they need.

KUBERNETES DEPLOYMENT
To orchestrate the containerized deployment, Kuber-

netes was chosen to fulfill all requirements of the deploy-
ment while keeping up with current best practices. A dia-
gram showing the deployment appears above in Fig. 2.

Containerization
As we have some site-specific changes to the Phoebus

components, the containerization of those is done by creat-
ing our own Docker files and associated options for appli-
cation start up. These are available at our GitHub reposi-
tory for the container images. For Kafka and Elasticsearch,
Kubernetes operators are used for the deployment and de-
scribed in further detail below.

Kubernetes Cluster
In order to proceed with a Kubernetes based deployment,

a Kubernetes cluster must first be available. At SLAC, we
have an on-premises data facility in which we can run Ku-
bernetes. This is called the SLAC Shared Scientific Data
Facility (S3DF) [6].

To facilitate deployments of multiple applications across
different user bases at SLAC, virtual clusters (vclusters)
are used. Similar to virtual machines, these vclusters allow
for multiple functional Kubernetes clusters to be run on the
same host cluster, without degradation of the functionality
provided to the end user.

High Availability
Kubernetes provides many high availability features to

ensure we get as close to constant alarm system uptime as
possible. If a pod fails, Kubernetes will ensure that a re-
placement is ready to take over from the failed pod without
any disruption to end users of the application. And a user-
specified liveness probe can be set to detect problems in
the application. This ensures that the potential failures

being monitored by Kubernetes match what the user is ex-
pecting.

For our deployment at SLAC, we have ensured that there
are multiple replicas running of all critical components of
the system. This includes a second copy of the Phoebus
alarm server for each alarm topic being monitored. While
this does result in duplicate Kafka message being gener-
ated, de-duplication is handled gracefully on the client
side. The benefit of this set up is that any potential down-
time is brought as close to zero as possible. Since there is
always a backup copy of each alarm server running, the
failure of a single server should go unnoticed by the end
user.

To further defend against potential downtime, a couple
of additional safeguards have been put in place. The option
to set pod anti-affinity has been used for the alarm servers,
meaning that when choosing which nodes each alarm
server should run on, Kubernetes will attempt to ensure
that each alarm server and its backup will be running on
different nodes. As an example, let’s say we have two cop-
ies of the alarm server monitoring the “accelerator” topic.
When the pods are first scheduled to run, they will be
placed onto different nodes. Then if one happens to go
down due to a hardware failure on the machine it is running
on, the other will still be active and serving data it is on a
separate node.

Another option in play is the pod disruption budget. By
setting this value, we specify that there must always be at
least one instance of each alarm server running at any given
time. In the event that servers must be migrated to new
pods, this prevents both from being stopped at the same
time.

Configuration
To manage the overall deployment, Kustomize [7] is

used as the configuration management tool. This provides

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO02

Software

Software Architecture & Technology Evolution

TH2AO02

1135

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

a declarative way to configure every component within the
deployment, while being fully integrated with the ku-
bectl [8] command line tool. All manifest files for the de-
ployment are version controlled ensuring that it is easy to
see why various changes were made and what exactly is
running at any given time.

Operators
Operators are a Kubernetes deployment pattern that at-

tempt to automate repeatable tasks that would usually be
handled by system operators. They can make managing
and updating components deployed to the cluster both eas-
ier and faster. For this deployment we have chosen two
popular and actively maintained operators for managing
the Kafka and Elasticsearch deployments.

Strimzi [9] was chosen as the operator for Kafka, and
ECK [10] for Elasticsearch. Both provide tools for helping
manage initial deployments and future upgrades.

UPDATES TO THE DEPLOYMENT
There are two main categories when it comes to updates

to the running system: users wanting to add a new alarm
configuration or modify an existing one, and administra-
tors of the Kubernetes vcluster wanting to update one or
more running components. For each case, we have at-
tempted to make the upgrade process both simple to do and
robust to errors.

Alarm Configuration Updates
When a user is ready to deploy a new device that will

produce new PVs, they may want to add these PVs to an
existing alarm configuration file so that they will be moni-
tored by the alarm system. In order to make this process as
easy as possible for the end user, nearly all of it has been
automated. The user only needs to edit a csv file, at which
point a series of GitHub actions take over to validate the
change, generate the associated xml file, and lint that file.
Once the change has been approved it will be merged into
the GitHub repository.

To continue this automatic process, a Kubernetes sidecar
has been set up within each pod that holds an instance of
the Phoebus alarm server. A sidecar is a deployment pattern
in which the sidecar container enhances the functionality
of the main container by running alongside it in the same
pod. In this case, our sidecar is using git-sync to monitor
changes to the GitHub repository. When a change is de-
tected, it pulls in the xml file for its topic and compares it
to the most recent one it loaded. If there is a difference, it
will send a restart message to the command topic in Kafka
using kcat, causing the alarm server to load the new con-
figuration.

Kubernetes Cluster Updates
The second main update scenario is when it is time to

move to a new version of one of the components running
within the cluster. In the case of one of the Phoebus com-
ponents, the source code is updated to the latest tagged re-
lease, and the Docker image is rebuilt and tagged as a new
release before being published to Docker Hub. All manifest

files referring to the updated Phoebus component just need
to have their release number updated, at which point they
can be redeployed.

When updating Kafka or Elasticsearch, we can use the
updated versions of their respective operators. To test up-
dates prior to releasing them to production, multiple Ku-
bernetes namespaces can be used. A namespace provides a
way of isolating groups of resources within the same clus-
ter. Thus, it is possible to have a staging namespace where
changes can be tested and proven to work before then re-
leasing to the production namespace.

USER INTERFACES
To facilitate increased engagement with alarms, multiple

additional interfaces to the system have been provided.

Python Client
The first is a python client with the same general func-

tionality as the existing ALH and Phoebus clients. It in-
cludes alarms in both a tree and table view, along with the
option to take actions such as acknowledge and bypass. Ex-
tra functionality provided by this client includes the ability
to integrate with the Python Display Manager (PyDM)
through use of python entry points. When the python client
is installed into the same virtual environment as PyDM, the
user will be able to use a data plugin to communicate with
Kafka via a PyDM display in the same way as any other
data source. This allows for building displays that show the
status of top level summary alarms without the need for a
separate alarm IOC backing them.

Slack Integration
Another point of integration is with our Slack work-

space. Channels can be created for specific alarm topics
and users who want to monitor those topics are added to
them. To send alarms to the Slack channel, the Slack API
is used via Slack Apps support. A webhook is added to the
channel to send alarms to, and an App is created and con-
nected with that webhook for posting the messages to the
channel. Then a simple container is created within the Ku-
bernetes cluster for reading messages from the Kafka
queue for its assigned topic and posting them to the Slack
channel. Like the other components of the cluster, this con-
tainer will automatically restart on any failure minimizing
any potential downtime.

Grafana
Lastly Grafana provides a simple way for interacting

with not just currently active alarms, but the entire history
of both alarm status and actions taken on them. Some de-
fault dashboards have been created for users to monitor the
history of alarms, and Grafana also makes it easy for users
to write their own queries which can eventually also be
made into custom dashboards. Since Grafana supports both
Elasticsearch and Loki as data sources, we get this support
with minimal setup required.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO02

TH2AO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1136

Software

Software Architecture & Technology Evolution

CONCLUSION
This upgraded system has been running and monitoring

devices in our experimental hutches and cryoplant for sev-
eral months now. User feedback has been positive, both for
the process of adding new devices to be monitored, as well
as the options for interfacing with the system. As a result
of this good feedback, this type of Kubernetes based de-
ployment is expected to be applied to additional applica-
tions in the future at SLAC.

REFERENCES
[1] Phoebus Alarm Server, https://github.com/Con­

trolSystemStudio/phoebus/tree/mas­
ter/app/alarm

[2] Kubernetes, https://kubernetes.io
[3] Kafka, https://kafka.apache.io
[4] Elasticsearch,

https://www.elastic.co/elasticsearch/
[5] Loki, https://grafana.com/oss/loki
[6] S3DF,

https://s3df.slac.stanford.edu/public/doc

[7] Kustomize, https://kustomize.io
[8] kubectl,

https://kubernetes.io/docs/reference/kubectl
[9] Strimzi, https://strimzi.io

[10] ECK, https://github.com/elastic/cloud­on­k8s

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO02

Software

Software Architecture & Technology Evolution

TH2AO02

1137

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

