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Abstract 
To support multiple scientific facilities at SLAC, a mod-

ern alarm system designed for availability, integrability, 
and extensibility is required. The new alarm system de-
ployed at SLAC fulfils these requirements by blending the 
Phoebus alarm server with existing open-source technolo-
gies for deployment, management, and visualization.  

To deliver a high-availability deployment, Kubernetes 
was chosen for orchestration of the system. By deploying 
all parts of the system as containers with Kubernetes, each 
component becomes robust to failures, self-healing, and 
readily recoverable.  

Well-supported Kubernetes Operators were selected to 
manage Kafka and Elasticsearch in accordance with cur-
rent best practices, using high-level declarative deploy-
ment files to shift deployment details into the software it-
self and facilitate nearly seamless future upgrades. An au-
tomated process based on git-sync allows for automated re-
starts of the alarm server when configuration files change 
eliminating the need for sysadmin intervention.  

To encourage increased accelerator operator engage-
ment, multiple interfaces are provided for interacting with 
alarms. Grafana dashboards offer a user-friendly way to 
build displays with minimal code, while a custom Python 
client allows for direct consumption from the Kafka mes-
sage queue and access to any information logged by the 
system. 

INTRODUCTION 
To assist in the commissioning of the upgrade to the 

Linac Coherent Light Source (LCLS-II) at SLAC, an up-
grade to the alarm system was proposed. In performing this 
upgrade there were several main priorities. First is a system 
which would be easy to work with for end users. Both add-
ing new devices to be monitored, as well as interacting with 
alarms that are surfaced should be as straightforward as 
possible. We also wanted a system that had near constant 
uptime, as it would be monitoring multiple critical facili-
ties across the lab. Finally, it was important to adhere to 
current best practices around alarm management and sys-
tem deployment as much as possible. To that end we as-
sessed the current status of various alarm management sys-
tems as well as deployment options. 

The Phoebus alarm server [1] met most of our require-
ments so we chose to base our system on it, thus eliminat-
ing the need to reinvent the wheel for basic alarm logic and 
functionality. For the deployment process Kubernetes [2] 
was settled on for orchestration of the system. Using these 
technologies brings our system in line with current best 
practices, while meeting our goal of high availability and 

performance. Further details of the deployment process 
follow. 

ALARM SERVER 
Since the Phoebus alarm server meets most of our re-

quirements, only a few site-specific changes were made to 
it prior to deployment. Two modifications of note are to 
allow the same process variable (PV) to appear along mul-
tiple branches of the alarm tree, and a way to make it easier 
for an alarm server to reload when its underlying configu-
ration file has changed. This allows for an automated con-
tinuous deployment process in which user changes to alarm 
configurations can be automatically incorporated into run-
ning alarm servers. 

 The main functionalities of handling alarm logic and 
translating changes in EPICS alarm severities into Kafka 
[3] messages remain unchanged. As depicted in Fig. 1 be-
low, the alarm server monitors PVs from an EPICS source, 
in this case a gateway. Any relevant changes are translated 
to Kafka messages and stored in the proper alarm topic.  All 
clients to the system read from the Kafka queue. 

 

 
Figure 1: Simplified flow diagram of alarm data. 

ALARM LOGGER 
The other main functional component of the system is 

the Phoebus alarm logger. This records a history of alarms 
and actions taken on them, and persists this history into an 
Elasticsearch [4] data store.  

Our deployment also provides the ability to use Loki [5] 
as a data store instead of Elasticsearch. This is handled by 
using a simple python application that reads data from 
Kafka and pushes it to Loki. Since many systems at SLAC 
already use Loki for log storage, providing this flexibility 
allows users the choice of where to persist data, and more 
easily integrate it with the data storage of other applica-
tions. 
 

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO02

TH2AO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1134

Software

Software Architecture & Technology Evolution



 
Figure 2: Diagram of the components deployed into the Kubernetes cluster. Multiple replicas of each component are 
running, while clients outside the cluster are able to access the data they need. 

KUBERNETES DEPLOYMENT 
To orchestrate the containerized deployment, Kuber-

netes was chosen to fulfill all requirements of the deploy-
ment while keeping up with current best practices. A dia-
gram showing the deployment appears above in Fig. 2. 

Containerization 
As we have some site-specific changes to the Phoebus 

components, the containerization of those is done by creat-
ing our own Docker files and associated options for appli-
cation start up. These are available at our GitHub reposi-
tory for the container images. For Kafka and Elasticsearch, 
Kubernetes operators are used for the deployment and de-
scribed in further detail below. 

Kubernetes Cluster 
In order to proceed with a Kubernetes based deployment, 

a Kubernetes cluster must first be available. At SLAC, we 
have an on-premises data facility in which we can run Ku-
bernetes. This is called the SLAC Shared Scientific Data 
Facility (S3DF) [6]. 

To facilitate deployments of multiple applications across 
different user bases at SLAC, virtual clusters (vclusters) 
are used. Similar to virtual machines, these vclusters allow 
for multiple functional Kubernetes clusters to be run on the 
same host cluster, without degradation of the functionality 
provided to the end user. 

High Availability 
Kubernetes provides many high availability features to 

ensure we get as close to constant alarm system uptime as 
possible. If a pod fails, Kubernetes will ensure that a re-
placement is ready to take over from the failed pod without 
any disruption to end users of the application. And a user-
specified liveness probe can be set to detect problems in 
the application. This ensures that the potential failures 

being monitored by Kubernetes match what the user is ex-
pecting. 

For our deployment at SLAC, we have ensured that there 
are multiple replicas running of all critical components of 
the system. This includes a second copy of the Phoebus 
alarm server for each alarm topic being monitored. While 
this does result in duplicate Kafka message being gener-
ated, de-duplication is handled gracefully on the client 
side. The benefit of this set up is that any potential down-
time is brought as close to zero as possible. Since there is 
always a backup copy of each alarm server running, the 
failure of a single server should go unnoticed by the end 
user.  

To further defend against potential downtime, a couple 
of additional safeguards have been put in place. The option 
to set pod anti-affinity has been used for the alarm servers, 
meaning that when choosing which nodes each alarm 
server should run on, Kubernetes will attempt to ensure 
that each alarm server and its backup will be running on 
different nodes. As an example, let’s say we have two cop-
ies of the alarm server monitoring the “accelerator” topic. 
When the pods are first scheduled to run, they will be 
placed onto different nodes. Then if one happens to go 
down due to a hardware failure on the machine it is running 
on, the other will still be active and serving data it is on a 
separate node. 

Another option in play is the pod disruption budget. By 
setting this value, we specify that there must always be at 
least one instance of each alarm server running at any given 
time. In the event that servers must be migrated to new 
pods, this prevents both from being stopped at the same 
time. 

Configuration 
To manage the overall deployment, Kustomize [7] is 

used as the configuration management tool. This provides 
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a declarative way to configure every component within the 
deployment, while being fully integrated with the ku-
bectl [8] command line tool. All manifest files for the de-
ployment are version controlled ensuring that it is easy to 
see why various changes were made and what exactly is 
running at any given time. 

Operators 
Operators are a Kubernetes deployment pattern that at-

tempt to automate repeatable tasks that would usually be 
handled by system operators. They can make managing 
and updating components deployed to the cluster both eas-
ier and faster. For this deployment we have chosen two 
popular and actively maintained operators for managing 
the Kafka and Elasticsearch deployments. 

Strimzi [9] was chosen as the operator for Kafka, and 
ECK [10] for Elasticsearch. Both provide tools for helping 
manage initial deployments and future upgrades. 

UPDATES TO THE DEPLOYMENT 
There are two main categories when it comes to updates 

to the running system: users wanting to add a new alarm 
configuration or modify an existing one, and administra-
tors of the Kubernetes vcluster wanting to update one or 
more running components. For each case, we have at-
tempted to make the upgrade process both simple to do and 
robust to errors. 

Alarm Configuration Updates 
When a user is ready to deploy a new device that will 

produce new PVs, they may want to add these PVs to an 
existing alarm configuration file so that they will be moni-
tored by the alarm system. In order to make this process as 
easy as possible for the end user, nearly all of it has been 
automated. The user only needs to edit a csv file, at which 
point a series of GitHub actions take over to validate the 
change, generate the associated xml file, and lint that file. 
Once the change has been approved it will be merged into 
the GitHub repository.   

To continue this automatic process, a Kubernetes sidecar 
has been set up within each pod that holds an instance of 
the Phoebus alarm server. A sidecar is a deployment pattern 
in which the sidecar container enhances the functionality 
of the main container by running alongside it in the same 
pod. In this case, our sidecar is using git-sync to monitor 
changes to the GitHub repository. When a change is de-
tected, it pulls in the xml file for its topic and compares it 
to the most recent one it loaded. If there is a difference, it 
will send a restart message to the command topic in Kafka 
using kcat, causing the alarm server to load the new con-
figuration. 

Kubernetes Cluster Updates 
The second main update scenario is when it is time to 

move to a new version of one of the components running 
within the cluster. In the case of one of the Phoebus com-
ponents, the source code is updated to the latest tagged re-
lease, and the Docker image is rebuilt and tagged as a new 
release before being published to Docker Hub. All manifest 

files referring to the updated Phoebus component just need 
to have their release number updated, at which point they 
can be redeployed. 

When updating Kafka or Elasticsearch, we can use the 
updated versions of their respective operators. To test up-
dates prior to releasing them to production, multiple Ku-
bernetes namespaces can be used. A namespace provides a 
way of isolating groups of resources within the same clus-
ter. Thus, it is possible to have a staging namespace where 
changes can be tested and proven to work before then re-
leasing to the production namespace. 

USER INTERFACES 
To facilitate increased engagement with alarms, multiple 

additional interfaces to the system have been provided. 

Python Client 
The first is a python client with the same general func-

tionality as the existing ALH and Phoebus clients. It in-
cludes alarms in both a tree and table view, along with the 
option to take actions such as acknowledge and bypass. Ex-
tra functionality provided by this client includes the ability 
to integrate with the Python Display Manager (PyDM) 
through use of python entry points. When the python client 
is installed into the same virtual environment as PyDM, the 
user will be able to use a data plugin to communicate with 
Kafka via a PyDM display in the same way as any other 
data source. This allows for building displays that show the 
status of top level summary alarms without the need for a 
separate alarm IOC backing them. 

Slack Integration 
Another point of integration is with our Slack work-

space. Channels can be created for specific alarm topics 
and users who want to monitor those topics are added to 
them. To send alarms to the Slack channel, the Slack API 
is used via Slack Apps support. A webhook is added to the 
channel to send alarms to, and an App is created and con-
nected with that webhook for posting the messages to the 
channel. Then a simple container is created within the Ku-
bernetes cluster for reading messages from the Kafka 
queue for its assigned topic and posting them to the Slack 
channel. Like the other components of the cluster, this con-
tainer will automatically restart on any failure minimizing 
any potential downtime. 

Grafana 
Lastly Grafana provides a simple way for interacting 

with not just currently active alarms, but the entire history 
of both alarm status and actions taken on them. Some de-
fault dashboards have been created for users to monitor the 
history of alarms, and Grafana also makes it easy for users 
to write their own queries which can eventually also be 
made into custom dashboards. Since Grafana supports both 
Elasticsearch and Loki as data sources, we get this support 
with minimal setup required. 
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CONCLUSION 
This upgraded system has been running and monitoring 

devices in our experimental hutches and cryoplant for sev-
eral months now. User feedback has been positive, both for 
the process of adding new devices to be monitored, as well 
as the options for interfacing with the system. As a result 
of this good feedback, this type of Kubernetes based de-
ployment is expected to be applied to additional applica-
tions in the future at SLAC. 
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