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Abstract

Equipment controlled by the Square Kilometre Array
(SKA) Control System will have a TANGO interface for
control and monitoring. Commands on TANGO device
servers have a 3000 milliseconds window to complete their
execution and return to the client. This timeout places a lim-
itation on some commands used on SKA TANGO devices
which take longer than the 3000 milliseconds window to
complete; the threshold is more stricter in the SKA Control
System (CS) Guidelines. Such a command, identified as a
Long Running Command (LRC), needs to be executed asyn-
chronously to circumvent the timeout. TANGO has support
for an asynchronous device which allows commands to be
executed slower than 3000 milliseconds by using a coroutine
to put the task on an event loop. During the exploration of
this, a decision was made to implement a custom approach
in our base repository which all devices depend on. In this
approach, every command annotated as “long running” is
handed over to a thread to complete the task and its pro-
gress is tracked through attributes. These attributes report
the queued commands along with their progress, status and
results. The client is provided with a unique identifier which
can be used to track the execution of the LRC and take fur-
ther action based on the outcome of that command. LRCs
can be aborted safely using a custom TANGO command.
We present the reference design and implementation of the
Long Running Commands for the SKA Controls System.

INTRODUCTION

A long running action, within the SKA Control System
(CS) Guidelines [1], is attributed to a command that exceeds
the execution time threshold of 10 milliseconds [2]. The
Telescope Control System is composed of a number of sub-
systems which form an intricate network of communicating
components. Due to the hierarchical interaction of these
components, coupled with some network and I/O bound
actions, response delays are symptomatic within this dis-
tributed system. TANGO [3] device servers used to control
and monitor the equipment of these components timeout on
commands which run tasks longer than 3000 milliseconds.
Within the SKA network, commands which execute long
running tasks should be executed by clients asynchronously
to avoid timeouts [4]. Additionally, device servers should
delegate tasks to threads to make them responsive to other
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client requests. The TANGO API enables both the imple-
mentation of an asynchronous device server and TANGO
client. In addition to this solution provided by TANGO,
the SKA Control System implements its own asynchronous
execution of LRCs with a queue manager and a reporting
mechanism to inform clients of the status of their submitted
request [5,6]. This implementation satisfies the four non-
functional requirements (NFRs) relevant for handling LRCs,
viz.: performance, dependability, interoperability and us-
ability. Table 1 outlines the NFRs. The objective of this
research paper is to describe the design and implementation
of LRC:s in the SKA Control System.

LRC IN SKA TANGO DEVICES: DESIGN

An Overview of the SKA Telescope Control System

Figure 1 depicts the normal hierarchical nature of TANGO
nodes regardless of commands being LRCs.

Node A, found at the top of the hierarchy of nodes, has
a process, Process X, to execute. Based on the complexity
of the task, Node A divides Process X into 4 subsections
namely, X1, X2, X3 and X4. Node A then delegates the
four sub-processes to downstream nodes called Node Al,
Node A2, Node A3 and Node A4 respectively as can be
seen in Fig. 1. The input of all these sub-processes is a
command together with its arguments; variables; configura-
tion settings and state of the downstream node it is assigned
to from Node A’s perspective. This is indicated through
the downward directed arrows connecting each downstream
node with Node A. The upward directed arrows, from the
perspective of Node A, indicate the values returned from the
downstream nodes as well as any external and observable
state of the downstream nodes. Just as Node A is responsible
for dividing Process X into smaller processes it is also re-
sponsible for the aggregation of the responses received back
from all the downstream nodes running the processes as well
as any overhead that may come with that. After responses
are aggregated, Node A can then report back to an upstream
node denoted as vertical dots above Node A. As mentioned
before, this architecture of disseminating and aggregating
tasks is command independent and it therefore still applies
within the solution of the LRCs spoken about in this paper.

The NFRs described in Table 1 together with key con-
siderations enumerated in the CS guidelines, namely syn-
chrony, asynchrony and concurrency were the building
blocks used to design and methodically implement LRCs in
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Table 1: The NFRs Related to Objectively Handling LRCs
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Criterion

Explanation

Performance

Dependability

Interoperability

Usability

Responsiveness of TANGO devices need to be improved because in
the current synchronous implementation while the device is executing a
long running command it does not service other requests (attribute reads
and writes; other commands, including another high priority, urgent
command). TANGO devices should support more than one client.

Error and fault reporting shall not be paused while the TANGO device is
executing a command. Similarly, a device that waits on another device
should still be able to report its state and status.

The telescope control system shall be able to interact with various com-
ponents, including ones that have long response times.

The complexity of a client due to interaction and coupling with a device,
and assumptions about the future state of the device should not be too
high.

-
-
]

Process X

Node A1

Node A2

Node A3 Node A4

Figure 1: Diagrammatic illustration of the tango-example multi-level device and interaction among those devices.

SKA TANGO devices [2]. The next sections illustrate the
design concept including client and server responsibilities.

Synchrony and Asynchrony

SKA TANGO devices use a hybrid approach to deal with
LRCs. The design stipulates that synchronous interactions
with a device should be available for commands that fall
within the predicted response time of less than 10 milli-
seconds. Asynchronous interactions with a device should be
available for commands that have the potential to be long run-
ning for a number of reasons [2]. This decision was based on
Section 5.9.2 and 5.9.4.1 of the SKA CS Guidelines shown
in Table 2.

Concurrency

The SKA CS Guidelines stipulate that an asynchronous
interaction is required between a client and device to execute
a single command on the device at a time, with the option
of queuing commands on the device. [2] Concurrency is
therefore enforced within the solution in the following ways:
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¢ All LRCs sent towards a device are to be executed se-
quentially in a FIFO manner, not concurrently with
each other.

* LRCs can be executed while concurrently servicing
synchronous “’short running” requests such as other
commands, attribute reads and writes and subscriptions
to device and attribute events.

Queuing of Long Running Commands

The solution also stipulates that an SKA TANGO device
should use a queue manager to manage an input queue for
all LRCs. Commands issued are immediately enqueued and
assessed against the state of the device for every dequeue
operation to determine if the command is allowed to run.
Table 3 explains the rules associated with the input queue.

Figure 2 illustrates the queuing mechanism and the flow
of command execution for LRCs. Commands A and B are
slow commands(LRCs) which will execute a task in a thread.
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Table 2: Extracts from the SKA CS Guidelines Informing the Hybrid Approach [2]

Section

Explanation

592

5.94.1

Use asynchronous commands for control that are known to be long
running (due to a large number of components involved in the execution)
and for control of operations that may have potential to be long running
due to uncertainty of latency (network or I/O bound operations including
operations that require the device that received the command from the
client to invoke commands in other devices that may fail).

Use asynchronous commands sparingly because their implementation on
both the client and device sides is more complicated. It can be added that
a system with asynchronous communication may be less deterministic
than one with synchronous communication.

Table 3: Input Queue Rules

Criterion

Explanation

Client Command Types

Client Command Rejection

Execution

Interrupt

Client(s)

Memory

Only LRCs are queued. Commands that keep the client blocked until
completed are not inserted in the queue.

If an LRC, X, is being executed then another LRC, Y, will be rejected if
a client sends it while X is being executed.

Items within a queue are executed in a FIFO manner. When not executing
a command, the executor thread periodically checks the queue, removes
the command at the head of the queue, and checks if the command can
be accepted and executed in the current state. If not, the command is
rejected. If the command can be accepted and executed in the current
state, the Executor thread begins the command execution. A TANGO
device will provide an unique identifier for each command invocation.
This is necessary for reporting purposes to allow activity to be tracked
without ambiguity.

The queue makes use of an abort command, “AbortCommands”, that
clears the queue and aborts the currently running command

Clients can send multiple commands to a device before receiving back a
response from the device. Since queues exist within a TANGO device’s
domain a client does not need to have an internal queue to manage its
requests to the TANGO device in question. More than one client can send
commands to the same TANGO device. Clients can monitor the status
of LRCs by using the “CheckLongRunningCommandStatus” command

On startup a TANGO device will have an empty queue. LRCs within a
queue are not persisted.
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Starting on the left hand side of the diagram in Fig. 2,
when a command is received from a client it goes through a
series validity tests. Not depicted within this diagram but
evident in the processing of LRCs is the fact that a TANGO
device will uniquely identify an LRC upon invocation so
that the client can subscribe to change events on that device.
Going back to Fig. 2, if all tests pass then the LRC is queued.
Conversely, if any test fails the server receiver thread discards
the command. In both cases the client will be able to keep
track of the change events. After processing and queuing
an LRC, the receiver thread can receive and process other
incoming commands.

THIBC004
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In the middle section of the diagram, when the server
executor thread is ready to execute the next LRC command
in the queue, it removes the command from the head of the
queue. It then verifies that the command can be accepted in
the current state. If not, then the command is discarded and
communicated to the client through a change event. At that
point the client then has the ability to react to this change
event in their preferred manner. In the case where the LRC
is accepted, the server executor thread will execute the com-
mand and its execution can result in a success or failure.
Regardless of the outcome the client will be updated and can
process the feedback from the change events. Upon complet-
ing the execution of an LRC the server executor will once
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Figure 2: Queuing mechanism and the flow of command execution for long running commands.

again be in a state to process another queued LRC. The pro-
gress reporting delivered through change events is enabled
in specific attributes: details follow in the next section.

LRC Progress Reporting

The solution also encompasses reporting, to monitor
LRCs within the control system. SKA TANGO devices
are programmed to report the progress status of an LRC to
clients when any of these events occur.

* When an LRC is received.

* When an LRC begins its execution.

e When an LRC has completed execution regardless of
the execution being successful, unsuccessful or when
an abort command is executed.

* When an LRC is removed from a queue. This would
happen when an abort command is executed.

In addition to the progress state of an LRC, it also cov-
ers the reporting of a return value of an LRC when it has
completed its execution. As mentioned before in Table 3, a
unique identifier is assigned to LRC:s - this aids a client to
successfully monitor their specific LRC since the identifier
is globally unique across the network of SKA Tango devices.

LRC Attributes and Commands Clients can monitor
and react to statuses of LRCs being executed through the
use of progress attributes. In order to track status responses,
clients need to subscribe to change events to receive the
respective attributes. A subscription will inform a client
of all attribute changes on an SKA TANGO device that
they have subscribed to. For this reason, a client has the
responsibility to ignor feedback related to identifiers they
are uninterested in and pay attention to the ones that are of
worth to them. To date there are 5 attributes used to track
LRCs within this solution. The list that follows shows what
attributes are available to clients:

* longRunningCommandIDsInQueue

— Returns LRC IDs available in a queue.
* longRunningCommandsInQueue
— Returns all the different types of LRCs present in
the queue.
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* longRunningCommandStatus

— Returns the status of an LRC
¢ longRunningCommandProgress

— Returns the progress of an LRC
* longRunningCommandResult

— Returns the result of an LRC

A more indepth look at the available attributes can be
found within the official Long Running Command docu-
mentation site [7].

Table 3 briefly introduced two commands, “AbortCom-
mands” and “CheckLongRunningCommandStatus” that the
solution uses. These commands aid the client in the man-
agement of LRCs. Their sequential execution descriptions
are outlined next.

Interrupts are initiated by, “AbortCommands”. When
invoked this is what happens:

* The current LRC is aborted.

* All enqueued LRCs are cleared out.

* The operation is communicated to the client irrespect-

ive of the command’s success or failure.

Statues of LRCs are checked through “CheckLongRun-
ningCommandStatus”. In order to execute this command, a
command identifier needs to be supplied as an input para-
meter. When it is executed one of the following state values
are returned in response. Figure 3 shows LRC enumerated
statuses.

Client Responsibilities The solution also imposes re-
sponsibilities on clients wanting to interact with SKA
TANGO devices. Clients are responsible for monitoring
the progress status of commands issued, as outlined in the
LRC Progress Reporting section of this paper. In order to
do this, clients need to subscribe to change events to receive
command statuses and related attribute updates. Clients
also need to implement a retry strategy to handle rejected
commands that may appear because a queue is full or if
an AbortCommands interrupt is invoked for instance. In
the case when a client is interacting with different devices
the onus is placed on the client to monitor the multiple ex-
ecutions. The implementation of how they should set up
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Figure 3: State diagram for LRC enumerated statuses

monitoring these devices internally is client specific and
non-standard.

Implementation in ska-tango-base

This section outlines the solution with reference to
this project’s maintained and shared repository, ska-tango-
base [5], which provides base classes to aid in the develop-
ment of the control system. The ideas presented here echo
what has been covered in the sections before but provides
a more technical approach into the solution from a code
perspective.

The base classes implement high level concepts, common
approaches and design patterns outlined in the CS Guideline.
This provides the wheels to harmonise the implementation
of the devices and their interfaces. The repository exposes
specialised classes which define commands as slow (long
running) or fast and uses callbacks to update the long running
command attributes to inform clients of the progress of their
commands.

Component Managers The ska-tango-base device
model envisages each TANGO device as comprising of two
layers:

* A component manager is a pure python object that
implements the monitoring and control functionality
of the device.

* The TANGO layer wraps the component manager and
provides it with a TANGO interface. Ideally this layer
is as thin and as simple as possible, and simply maps

— TANGO commands to component manager meth-
ods,

— TANGO attributes to component manager prop-
erties,

— component manager callbacks calls to TANGO
events, and so on.

Component Classes TANGO commands are built on
top of two basic command classes:
* FastCommand: a command class for commands that
are fast and synchronous.
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* Command tasks are queued for execution.

¢ SlowCommand: a command class for commands that
are slow and therefore implemented asynchronously.

When a FastCommand is executed, the TANGO layer
calls the corresponding method in the component manager,
waits for the method to complete, and returns the result. This
is appropriate because the component manager method is
known to be "fast”.

When a SlowCommand is executed, the TANGO layer:

* Creates a command ID for the command.

* Prepares a callback function that is associated with that
command ID. When called with the appropriate updates
on command status, progress and results, this callback
function updates the TANGO layer’s records of com-
mand status, progress and result for that command idea,
resulting in updates to the following TANGO progress
attributes longRunningCommandStatus, longRunning-
CommandProgress, and longRunningCommandResult.

* Invokes the corresponding component manager method,
passing it the prepared callback.

The component manager method that is invoked by a

SlowCommand:

« Starts or enqueues the work to be done asynchronously,
passing it the callback

* Returns immediately.

The asynchronous work to be done is implemented so
that the callback is called from time to time with updates on
status, progress and finally the result.

An important property of this design is that the SlowCom-
mand, and indeed the entire TANGO layer, is independent of
any particular concurrency mechanism. The TANGO layer
knows only that the work will be done asynchronously, and
that it will be kept up to date on that asynchronous work by
calls to the callback. On the other hand, the concurrency
mechanism does not need to know about command IDs, or
indeed anything to do with the TANGO LRC interface. It
only knows that it has to call its callback with status, progress
and result updates. Two concurrency mechanisms have been
implemented to date:

» A TaskExecutor, based on a python standard Thread-
PoolExecutor. In this mechanism, the work to be done
is placed into a task queue that is serviced by some
number of worker threads. Once a task reaches the
front of the queue, it is picked up and run by a worker
thread. The worker thread executes the task, calling the
callback with updates from time to time.

¢ A Poller, in this mechanism, the work to be done, and
the callback, are stored in memory that is shared with a
poller. As part of its polling loop, the poller continually
checks that shared memory, to help it decide what to
do on the next poll. When the poller decides to execute
a task on its next poll, it also calls the corresponding
callback with updates.

The ska-tango-base repository has a reference implement-
ation [8] of the component manager which can be used for
teaching and testing purposes. It illustrates how a compon-
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Figure 4: Multiple Clients Invoke Multiple Long Running Commands

ent manager is implemented and can be adapted for specific
needs but not to be subclassed.

Example Scenario

This section provides an example of how an LRC within
the SKA control system would be handled. The scenario
presented is not exhaustive. Other scenarios are documented,
but not shown within this paper, include:

* How multiple clients can invoke multiple long running
commands while a non-long-running command is ex-
ecuted.

¢ How long running commands are aborted when mul-
tiple clients have invoked multiple long running com-
mands.

* How a device restarts when there is a long running
command in its queue.

* How the solution handles multi-level commands.

* How a sample client interaction looks like.

Figure 4 illustrates how SKA TANGO devices handle

multiple clients invoking multiple LRCs. The basic flow of
the sequence diagram is outline here [7]:
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* Multiple clients invoke long running commands.

* Command tasks are queued for execution.

¢ Tasks are executed one at a time, first in, first out.

* Once completed (successfully/unsuccessfully) the cli-
ent is notified via a change event on an attribute.

CONCLUSION

LRCs have a negative impact on the throughput of distrib-
uted systems if they are implemented as blocking requests.
This necessitates the need to have asynchronous execution of
such commands. The TANGO Controls library recognises
this need and provides the avenue to write asynchronous
devices. In the SKA control system, an alternative asyn-
chronous solution has been implemented according to our
CS guidelines. Top of the list for requirements comprises:
performance, dependability, interoperability and usability.
The solution presented makes use of an input queue, within
all TANGO the devices, with a reporting mechanism to
manage and track multiple commands sent towards each
TANGO device. In order to differentiate the commands
sent to a device, clients receive a unique identifiable code
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which they can use to listen for progress updates. Lastly
the solution also poses responsibilities on the client to sub-
scribe to event changes to track the statuses of commands
they have sent and also enforces that the client is responsible
for aggregating the data received back from the TANGO
devices.
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