
THE DESY OPEN SOURCE FPGA FRAMEWORK
L. Butkowski∗, A. Bellandi, B. Dursun, C. Gümüs, K. Schulz,

M. Büchler, N. Omidsajedi, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
Modern FPGA firmware development involves integrat-

ing various intellectual properties (IP), modules written in
hardware description languages (HDL), high-level synthe-
sis (HLS), and software/hardware CPUs with embedded
Linux or bare-metal applications. This process may in-
volve multiple tools from the same or different vendors,
making it complex and challenging. Additionally, scientific
institutions such as DESY require long-term maintenance
and reproducibility for designs that may involve multiple
developers, further complicating the process. To address
these challenges, we have developed an open-source FPGA
firmware framework (FWK) at DESY that streamlines de-
velopment, facilitates collaboration, and reduces complexity.
The FWK achieves this by providing an abstraction layer,
a defined structure, and guidelines to create big FPGA de-
signs with ease. FWK also generates documentation and
address maps necessary for high-level software frameworks
like ChimeraTK. This paper presents an overview and the
idea of the FWK.

INTRODUCTION
At the scientific institute DESY [1], Field-Programmable

Gate Arrays (FPGAs) have become indispensable compo-
nents within a wide array of control and diagnostic systems.
The adoption of FPGAs in these applications is primarily
driven by their exceptional multichannel computation power
and unparalleled flexibility. However, the FPGA firmware
development process at DESY presents a set of significant
challenges. The institute’s facilities, including EuXFEL
and FLASH, demand long-term support and maintenance,
spanning up to 20 years [2]. Over such extended periods, nu-
merous features evolve or undergo modifications, toolchains
are updated or replaced, and hardware experiences changes
or upgrades. What further complicates the process is the
involvement of multiple developers and collaborations, with
projects transitioning between responsible persons.

These firmware development challenges coincide with the
management of multiple projects, often handled by small
teams, and run in parallel with a continuous stream of new
developments and rapid prototyping efforts. To further com-
plicate matters, the most recent developments encompass
a convergence of multiple technologies, entailing the inte-
gration of code written in Hardware Description Language
(HDL), High-Level Synthesis (HLS), Embedded C/C++,
and Embedded Linux into a unified and coherent design.

To address these challenges of FPGA firmware develop-
ment head-on, a dedicated firmware framework has been
∗ lukasz.butkowski@desy.de

developed. This framework is an abstraction layer that car-
ries a set of rules, scripts, functions, and procedures that
are universal and reusable. The initial framework idea is
presented in Figure 1. This framework has been designed to
tackle a wide range of issues:

• Universal support for multiple vendor tools through an
abstraction layer.

• Consistent firmware construction for a unified approach
across projects.

• Reproducible builds for enhanced stability and reliabil-
ity.

• Code reusability for accelerated development and re-
duced redundancy.

• Collaboration support for multiple developers working
on the same project.

• Faster adaptation to new hardware developments.
• Streamlined application deployment on ready hardware

platforms.
• Efficient configuration management for easy customiza-

tion and flexibility.
• Simplified address space management and integration

with ChimeraTK framework [3].
• Automatically generating the technical and user docu-

mentation.
• Integrated design verification capabilities.
• Quality assurance enhancements through automation in

versioning and builds, ready for continuous integration.
• Ability to combine multiple technologies such as HDL,

HLS, Embedded C and Linux into one design.

FWKTools configuration
file

HDL
sources

HLS
sources

Yocto
layers

C/C++
sources

FPGA
project

Documentation
linter project

Linux
image

Bare metal
 application

Address
space

mapping

Figure 1: Framework concept.

The initial iteration of the firmware framework was cre-
ated in 2013 for MTCA.4 systems at EuXFEL [4]. Initially,
the framework was closely integrated with the code in a
mono repository, leading to challenges related to sharing
and scalability as project numbers grew. To address these
issues, the decision was taken to decouple the framework
from the code, restructure it, and release it as open source.
This transition was motivated by the aim of supporting other
institutions and facilitating collaboration through open sourc-
ing [5].

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4AO03

MO4AO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

222

Hardware

FPGA & DAQ Hardware

GENERAL STRUCTURE

In the firmware framework, there are four major compo-
nents:

• Framework module
• Source modules
• Main project
• Vendor tools

Sources Modules

...

sources

Repository

Vendor Tools

Xilinx Vivado

configuration

GHDL

Xilinx ISE

Xilinx Vitis

Xilinx XSDK

ModelSim

VHDL LSVHDL
LS

(fwk)

cmakepython

make Tcl

FPGA Firmware
Framework

Vendor Tool
Project

Vendor Tool
Build

artifacts:
.bit/elf/bin/map/...

.tcl

sources

Repository

.tcl

sources

Repository

.tcl

...
cocotb

Libero

Figure 2: FPGA firmware framework major components.

The framework is a set of scripts, functions and procedures
which combine all the input files needed to produce a build.
It is added to the project and becomes its integral part.

Source modules are blocks of functionality that can be
decoupled and abstracted from the rest of the project. Each
module can have its own address space and can be shared
among various projects. A module can contain code written
in HDL, HLS, C/C++, or Yocto layers. Modules have a de-
fined folder structure which is described in Folder Structure
section.

The main project is where the modules come together to
produce an output. The project can realize a complete built
of FPGA bit file, run a simulation environment or build a
Linux image. It also contains necessary scripts for project
creation, build or simulation along with the documentation.
The project has a defined structure which is described in
Folder Structure section.

Vendor tools are executables which are used to generate
artifacts from the project sources. They are not integral part
of the framework. Tools should be installed system wide or
in a virtual environment and accessible by the FWK scripts.

All the components are presented in Figure 2.
For the framework, it is requires that each of the source

module and the project provide a configuration file with a
defined interface and variables set.

The framework utilizes the following technologies:
• GNU make as the entry point.
• Tcl as the main framework scripting language.
• Tcl as the source module configuration files.
• Python as the auxiliary supporting tools.
• Cmake supporting makfiles generation.

Configuration Files
The main project is configured over environment variables

set in configuration file. Over these environment variables
you may set values such as the project name, project config-
uration name or default vendor tool. Each project can have
multiple configuration files. By selecting configuration file
you can change the project creation or build behavior.

Tcl Scripts

tool.tcl

Makefile

configuration filesource

main.tcl

Tool

FWK

project

source modules

tool.tcl

bsp.tclapp.tcl

mod3.tcl mod2.tcl mod1.tcl

select backend

select target and configuration

project.tcl

init

initinit

Figure 3: FWK Tcl scripts flow.

For the framework, the Tcl scripting language was chosen.
Tcl is a high-level, general-purpose, interpreted, dynamic
programming language intended to be embedded into ap-
plications. Most of the vendor HDL tools can be driven by
Tcl commands with a built-in Tcl interpreter. This makes it
possible to integrate the framework into the vendor tool, and
all the FWK commands can be run from the tool’s command
line Tcl console.

Tcl scripts have been chosen as well as the configuration
file for the source modules. It has advantages over static
configuration files such as YAML or JSON. Unlike these,
Tcl gives the possibility to use conditional statements, loops,
or run a script. This allows to configure the source modules
dependently on the configuration settings or the vendor tools
used.

The firmware Tcl file structure is organized in detail. In
this system, every source module possesses its dedicated Tcl
script, a design that promotes modularity and clarity. The
script’s structure follows the hooks concept, ensuring that
each module’s functionality seamlessly integrates into the
framework. To maintain consistency and interoperability,
all Tcl scripts mandate the presence of standard procedures.

Within this framework, each project and source module
must have a dedicated Tcl file containing the following es-
sential procedures:

• init : Executed at the project’s outset to initialize the
project’s structure, hierarchy, and configuration vari-
ables. It also sets dependencies on source modules.

• setSources : Invoked to configure variables with source
file information.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4AO03

Hardware

FPGA & DAQ Hardware

MO4AO03

223

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

• setAddress : Responsible for defining address space in-
formation, including name, address, and the definition
file.

• doOnCreate : Triggered upon project creation by the
vendor tool backend, facilitating the setting of project
properties and sources.

• doOnBuild : Executed just before the project build,
also by the vendor tool backend, offering the opportu-
nity to configure build-specific properties or regenerate
files.

• setSim : Active during simulation, this procedure sets
simulation environment variables.

The framework abstracts all vendor tool commands and
procedures for project management, including source ad-
ditions and build processes, providing a unified set of Tcl
procedures. However, it retains the flexibility to condition-
ally execute vendor tool-specific procedures.

The processing of module Tcl files commences with the it-
erative execution of the ’init’ procedures. These procedures,
belonging to each module, are organized within separate
nested namespaces, forming a dependency tree among the
modules. With this tree structure in place, all other pro-
cedures are executed recursively throughout the tree, with
execution proceeding from the last child to the top parent.
As presented in Figure 3, the execution initiates with the
Makefile, along with specified targets and configuration files.
Based on this information, the appropriate vendor tool back-
end is selected, and the project Tcl file is activated. The
example Tcl namespaces created are presented in Figure 4.

: : f w f w k : : s r c : : a p p : : m o d 2 : :
: : f w f w k : : s r c : : a p p : : m o d 3 : :
: : f w f w k : : s r c : : b s p : : m o d 1 : :
: : f w f w k : : s r c : :

Figure 4: Tcl namespaces created for example in Figure 3.

For vendor tools lacking a Tcl interpreter, such as GHDL,
a standard Tcl shell is employed to generate the project.
The project’s structure is abstracted from the developer and
typically takes the form of Makefiles, often generated with
the assistance of CMake.

Source Code Management
The framework utilizes a source code management (SCM)

tool to manage modules and their versions. Each of the
main project modules, including sources, framework, and
the project itself, is stored in a separate repository. Currently,
Git is used as the SCM for the framework, which is placed
under a Git repository. The main project serves as a super
project, and all modules are treated as Git submodules. We
rely on Git to manage versions and track changes. While
this approach offers the advantage of using a standardized
method, it does limit us to only one SCM type, which could
be considered for change in the future.

In principle, all the framework components could work
without any SCM, but we would lose all the benefits, such

cfg

fwk

Makefile

doc

out

prj

src

Project

hw

bsp

app

mod

tcl

README.adoc

doc

sim

hdl

tcl
...

Module

sw

Project Repository

Source
Module

open source
git repository

open source
git repository

closed source
git repository

bsp_sis8300ku

framework

module a

su
bm

od
ule

Figure 5: Firmware framework project structure.

as tracking changes, enabling reproducible builds, and au-
tomating version tracking. The framework generates version
files based on the information from the SCM and places this
information in a way that is accessible in the final build.

Folder Structure
Firmware framework provides a guideline about the folder

structure of the projects and the source modules. Applying
this guideline is not mandatory but the standardization of
the folder structure makes easier to collaborate or maintain-
ing multiple projects. The project and module structure is
presented in Figure 5.

The project folders have the following functions:
• cfg - contains project configuration files
• doc - documentation of the project
• fwk - firmware framework folder
• out - project build output files, all artifacts go in here

(.bit, .map, .xsa etc)
• prj - project environment, vendor tool project files,

temporary files
• src - sources of the project
• tcl - project Tcl’s script files
If the project consists of hardware and embedded soft-

ware or Linux components, additional source modules in the
’src’ folder should be grouped into ’hw’, ’sw’, and ’yocto’
subfolders, respectively.

The source module folders have the following functions:
• doc - documentation of the project
• hdl (src) - module sources
• sim - test and simulation sources such as tesbenches
• tcl - module tcl files

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4AO03

MO4AO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

224

Hardware

FPGA & DAQ Hardware

ADDRESS SPACE
Address space description and generation are essential

aspects of FPGA design, with implications for hardware
and software integration. The framework simplifies this
challenge by collecting address space information, accom-
modating various formats, and constructing address space
trees.

The FWK’s role is to collate data about each module’s ad-
dress space, organize hierarchy, and generate output files for
hardware and software interaction, as presented in Figure 6.
It can adapt to standardized or proprietary formats, making
it versatile for integrating legacy and new modules within a
single design. FWK creates address trees in Tcl to manage
diverse address space formats effectively.

The address space backend, a crucial component, trans-
lates the Tcl-based address tree into an actual address space
description in a form understood by high-level software
frameworks like ChimeraTK or bare-metal applications. Ad-
ditionally, the address space backend generates documenta-
tion files, register-transfer level (RTL) files such as VHDL,
or register models and abstractions used in design verifica-
tion. Currently, there is only one supported backend called
DesyRDL, described in DesyRDL section.

In modern designs, there is a possibility of having multi-
ple address trees that may not be related or may share the
same bus. These address trees can be accessed by various
managers, including embedded CPUs, over Ethernet, using
direct memory access (DMA), or PCIe. This complexity
adds sophistication to the generation of address maps. To
address this issue, within the firmware framework, we define
what is known as an ”access channel.” An access channel
describes how you can access the address tree and defines
the address spaces that are visible from different points.

REG

FPGA

REG

Board Support
Package

CPU
(ARM)

CPU

PCIe

EthApplication

memory
map

FWK

REG Module 2

In
te

rc
on

ne
ct

IP-XACT

High Level
Application

REG Module 1

SystemRDL

SystemRDL

VHDL PKG

Figure 6: Collecting and compiling of address space by
FWK.

Address Space Tree
The example address space tree is presented in Figure 7.

Each node has a label, address, address format, and an ad-
dress definition file or variable specified. FWK simplifies
the creation of these trees by providing procedures. As an

::fwfwk::AddressSpace

Project Name

type: PROJECT

addr: 0x00000000 size: 3G

BSP

type: RDL

access channel: 0

addr: 0x00000000

size: 8M

../rdl/bsp.rdl

C2C

type: NODE

access channel: 0

addr: 0x00100000

size: 8M

{}

APP

type: RDL

access channel: 1

addr: 0x00000000

size: 8M

../rdl/app_example.rdl

AXIF

type: IPX

addr: 0x00200000

size: 64k

instance_name

MODULE_0

type: RDL

addr: {}

size: {}

../rdl/module0.rdl

MODULE_1

type: VHDL

addr: {}

size: {}

../hdl/module1_pkg.vhd

Figure 7: Example address space tree in Tcl.

argument, they accepts an address definition file or another
tree which allows the merging of trees and the construction
of a proper hierarchy.

DesyRDL
DesyRDL is an open-source tool that generates outputs

for an address space defined by one or many SystemRDL™
2.0 [6] input files. It has been written in Python with the use
of the open-source systemrdl-compiler [7]. The input files
are prepared by the FWK, which also converts all address
space formats to SystemRDL. DesyRDL compiles them and
produces artifacts such as VHDL code, documentation in the
form of markup files, header files, a map file for ChimeraTK,
and register models for design simulation and verification.
The concept is presented in Figure 8.

DesyRDL, as an address space generation backend, is one
of the key components of the firmware framework.

VHDL

Documentation

Header files

ChimeraTK

Verification

SystemRDL files

generate

run

output

systemrdl-
compiler

DesyRDL

FWK
address space tree

Figure 8: Generation of artifacts by DesyRDL tool.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4AO03

Hardware

FPGA & DAQ Hardware

MO4AO03

225

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

DOCUMENTATION
FWK follows the Documentation as Code approach [8].

This means that documentation is kept together with the code
in the same repository. Documentation is written in text-
based files with a defined syntax. The framework prefers
AsciiDoc syntax for documents, as it has integrated tools that
generate output based on this format. The Antora framework
is used to generate web-based documentation, and Asciidoc-
tor is used for PDF generation. The role of FWK is to gather
module documentation, generate register documentation,
and execute documentation backend tools, as presented in
Figure 9.

doc
prj

src

Project

doc

doc...

hw

bsp

desyrdl FWK

project docs

as
ci

id
oc

to
r

an
to

ra
si

te

m
od

ul
e/

s
do

csaddress sp
ace

docs

PDF

PDF

< / >
HTML

Figure 9: Documentation generation flow.

VENDOR TOOLS
At the time of this writing, FWK supports a number of

vendor tools. The list is presented in Table 1.

Table 1: FWK Supported Vendor Tools

Tool Name Type

Xilinx Vivado Synthesis/Simulation
Xilinx ISE Synthesis
Xilinx PlanAhead Synthesis
Xilinx Vitis HLS Synthesis
Xilinx Vitis Processor support
Xilinx XSDK Processor support
Xilinx Appguru Processor support
Microchip Libero Synthesis
Siemens ModelSim Simulation
cocotb Simulation
GDHL Simulation/Synthesis/

Language Server
VHDL LS Language Server
VHDL Tool Language Server
bitbake Yocto Embeded Linux

EXECUTION FLOW
As described in the introduction, the framework unifies

the execution flow regardless of the vendor tool used. In
Figure 10 there is a common flow presented that is used to
regenerate, build, simulate and analyze the project.

c l on e repo
g i t c l o n e git@ . . . r epo
cd repo
c l on e a l l submodules r e p o s i t o r i e s
g i t submodules upda t e −− i n i t −− r e c u r s i v e
c r e a t e v i r t u a l env i r onmen t w i t h t o o l s
make env
c r e a t e p r o j e c t
make c fg =example1 p r o j e c t
b u i l d t h e p r o j e c t −> g e n e r a t e a r t i f a c t s
make c fg =example1 b u i l d
b u i l d documen ta t i on
make c fg =example1 doc
run p r o j e c t s i m u l a t i o n
make c fg =example1 sim
open t o o l gu i f o r d e s i g n a n a l y s i s / debug
make c fg =example1 gu i

Figure 10: FWK common flow.

RESULTS
The framework’s effectiveness has been demonstrated not

only within its birthplace, the MSK group at DESY, but
also in various other groups and institutes. Within the MSK
group, where it originated, it empowered teams ranging
from 3 to 7 members to efficiently manage approximately
40 projects, each with multiple configurations across 15
distinct hardware setups. This framework also facilitated the
contributions of up to 45 developers to the codebase, leading
to remarkable enhancements in collaboration, code quality,
and change traceability.

The advantages of implementing this framework are ex-
tensive:

• Significant reduction in overall development time.
• Heightened system maintainability.
• Streamlined collaborative development process.
• Enhanced quality control practices.
• Simplified management of multiple projects.
• Reducted complexity through well-defined abstraction

layers.
However, it is imperative to acknowledge the associated

challenges:
• Initial investment of time and effort to learn the frame-

work.
• Adherence to specific rules, potentially limiting flexi-

bility.
• Commitment of resources for ongoing framework de-

velopment and maintenance.
While the benefits of utilizing this framework outweigh

its drawbacks, it is important to recognize that the initial

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4AO03

MO4AO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

226

Hardware

FPGA & DAQ Hardware

cost can be substantial.
Additionally, open-sourcing the code offers advantages,

such as improved collaboration by minimizing the issues
with code sharing, and broader feedback and review. Nev-
ertheless, this endeavor is not without its own resource de-
mands, including supporting external users, enhancing doc-
umentation, ensuring backward compatibility, and overall
code refinement.

Balancing these considerations is essential in making
an informed decision regarding the implementation of the
framework.

CONCLUSIONS
In conclusion, DESY’s open-source FPGA firmware

framework (FWK) tackles the challenges of FPGA firmware
development by providing a structured and unified approach.
It offers an abstraction layer, ensures consistency, and sup-
ports multiple technologies, including HDL, HLS, Embed-
ded C/C++, and Embedded Linux. This framework stream-
lines collaboration, enhances reproducibility, and simpli-
fies address space management, making it a valuable tool
for FPGA developers. However, while it significantly re-
duces development time and improves maintainability, it
requires an initial learning curve and ongoing maintenance
commitment, which should be carefully considered when
implementing the FWK.

Overall, DESY’s FWK represents a crucial advancement
in FPGA firmware development, benefiting scientific re-
search institutions and other projects by providing a well-

defined framework for efficient and reliable FPGA design.

REFERENCES
[1] DESY, Deutches Elektronen-Synchrotron, [Online; accessed

September-2023]. https://www.desy.de
[2] M. Altarelli, R. Brinkmann, and M. Chergui, The European

X-Ray Free-Electron Laser. Technical design report. DESY
XFEL Project Group, 2007.

[3] G. Varghese et al., “Chimeratk-a software tool kit for control
applications”, IPAC17, Copenhagen, Denmark, 2017.

[4] Ł. Butkowski, T. Kozak, P. Prędki, R. Rybaniec, and B. Yang,
“FPGA Firmware Framework for MTCA.4 AMC Modules”, in
Proc. of International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS’15), Mel-
bourne, Australia, 17-23 October 2015, Melbourne, Australia,
2015, pp. 876–880.
doi:doi:10.18429/JACoW-ICALEPCS2015-WEPGF074

[5] DESY, FPGA firmware framework, [Online; accessed
September-2023]. https://gitlab.desy.de/fpgafw/
fwk

[6] Aaccellera, SystemRDL 2.0 register description lan-
guage, [Online; accessed September-2023]. https://
www.accellera.org/images/downloads/standards/
systemrdl/SystemRDL_2.0_Jan2018.pdf

[7] A. Mykyta, SystemRDL 2.0 language compiler front-end,
[Online; accessed September-2023]. https://systemrdl-
compiler.readthedocs.io/en/stable/

[8] E. Holscher, Docs as code, [Online; accessed September-
2023]. https://www.writethedocs.org/guide/docs-
as-code/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4AO03

Hardware

FPGA & DAQ Hardware

MO4AO03

227

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

