
MICRO FRONTENDS - A NEW MIGRATION PROCESS FOR
MONOLITHIC WEB APPLICATIONS

A. Asko∗, S. Deghaye, E. Galatas, A. Kustra, C. Roderick, B. Urbaniec, CERN, Geneva, Switzerland

Abstract
Numerous standalone web applications have been devel-

oped over the last 10 years to support the configuration and
operation of the CERN accelerator complex. These applica-
tions have different levels of complexity, but they all support
hundreds of users for essential activities. A monolithic ar-
chitecture has been utilised so far, tailoring the standalone
applications to specific accelerator needs.

The global GUI technology landscape continues to evolve
quickly, with most GUI technologies typically reaching end-
of-life within 1-to-5 years. Keeping up-to-date with tech-
nologies presents a major challenge for the GUI application
maintainers, with larger monolithic applications requiring
long migration cycles which impede the introduction of new
functionalities during the migration phase.

To tackle the above issues within the CERN Controls
domain, a new Micro Frontend architecture has been intro-
duced and is being used to gradually migrate a large and
complex AngularJS-based web application to Angular. This
paper introduces the new generic architecture, which is not
tied to any specific web framework. The development work-
flow, challenges, and lessons learned so far will be covered.
The differences of this approach, particularly when com-
pared to monolithic application technology migrations, will
also be discussed.

INTRODUCTION
Since its inception, web development has been character-

ized as a rapidly evolving field, continuously advancing with
fresh tools and solutions for organizations and businesses.
Over time, numerous web applications have been created
to facilitate the control, monitoring, and configuration of
various components within CERN’s accelerator complex.
In numerous instances, given the intricacies inherent to a
setting like CERN, the development of these applications
has extended over long periods, often spanning years.

Given the volatile nature of web technologies and the in-
dustry as a whole, these applications would ultimately rely
on already outdated technologies, shortly after they were
deemed feature-complete. In turn, this would trigger a signif-
icant migration effort, transitioning to the latest ”standard”
web technology stack, a process that could also span several
years. Simultaneously, fresh requirements emerging from
the accelerator complex sometimes require the development

∗ anti.asko@cern.ch,
stephane.deghaye@cern.ch,
epameinondas.galatas@cern.ch,
ajob.kustra@cern.ch,
chris.roderick@cern.ch,
bartek.urbaniec@cern.ch

of new applications, sometimes using yet another technology
stack.

The development of these applications in this manner, can
lead to being trapped in a repetitive cycle, endeavoring to
deliver the necessary functionalities while also remaining
aligned with the swiftly progressing market technology land-
scape. This raises the question, why bother to try to align
with modern technologies? There are two main reasons for
this:

1. To profit from the global industry investment in modern,
supported technologies and deliver solutions that meet
user requirements and user experience expectations.

2. To use technologies that recent generations of engineers
are both familiar with and aspire to use, and in turn
provide them with transferable skills. This aligns with
one of CERN’s core missions, which entails training
and preparing the upcoming generations of engineers
to confront the challenges that will inevitably arise in
the future.

Despite the aforementioned reasoning, it was clearly de-
sirable to find an alternative approach.Rather than con-
stantly embarking on repetitive, technology-driven, lengthy
re-development upgrades, a path was sought to be able to
introduce new technologies in a more gradual manner. The
aim being to avoid lengthy full application re-development
cycles and be able to add new functionality and improve-
ments to existing applications, leveraging new technology
in the process. The solution has been to adopt a new ar-
chitectural approach, known as Micro Frontends, gradually
replacing outdated, monolithic applications. Leveraging
this new development style has the potential to redefine the
landscape of web applications for accelerator controls.

OBJECTIVES AND GUIDING PRINCIPALS
Currently, CERN accelerator controls rely on more than

30 web applications that have diverse levels of complexity
and are based on various technology stacks. To reach a
more maintainable situation, it is imperative to tackle this
heterogeneity and strive for standardization. Several web
application frameworks are currently in use, including Angu-
larJS (which reached end-of-life in January 2022), Angular,
and VueJS. This presents an additional challenge for develop-
ment teams, requiring competence in multiple frameworks
and their unique approaches or methodologies. The pursuit
of standardization on a single framework will facilitate the
concurrent migration of multiple applications, enable more
flexible allocation of development teams, and promote the
reuse of common solutions across the overall application
portfolio.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO04

Software

User Interfaces & User Experience

FR2BCO04

1663

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



To initiate the micro frontends migration process effec-
tively, it is imperative to have well-defined objectives, that
serve as guiding principles upon which decisions can be
made regarding the applications concerned.

Objectives
The paramount objective for the new migration process is

to achieve a smooth coexistence between new and existing ap-
plications. During the incremental upgrade, newly migrated
components of the applications must integrate smoothly
with the old application, under the same domain. In this
way, end-users are not exposed to the complexity of man-
aging multiple domains in what can already be a complex
application landscape.

The next objective is to ensure that it remains feasible to
concurrently develop both the legacy and newly-migrated
sections of the applications. It is essential to anticipate that
certain elements cannot be migrated instantaneously, and
there may be justifiable reasons for further extensions in the
legacy applications. Likewise, the capability to deliver es-
sential bug fixes to both segments of the applications should
also be maintained. This dual development approach ensures
a smooth transition without compromising critical function-
ality or stability.

Guiding Principals
The frontend is inherently the most dynamic part of

an application and subject to more frequent technology
changes. Therefore, prioritizing lightweight solutions is rec-
ommended, limiting business logic in frontend components,
and separating responsibilities among application compo-
nents for a modular ”divide and conquer” approach. This
lays the foundations for implementation of future changes,
with minimal impact on other parts of the system.

All of the architectural and development aspects outlined
above should have a minimal impact on development team
performance or application maintainability. Optimizing the
application development cycle, by as decribed, should re-
sult in the swift delivery of maintainable code, that can be
extended and adapted for future needs.

ARCHITECTURE
Overview

Micro frontend architecture, similar to the microservices
architecture, advocates for independent, deliverable applica-
tions that are composed into a greater whole. For the plethora
of monolithic applications that are part of the CERN acceler-
ators controls, adopting a micro frontend architecture opens
the door to begin incrementally upgrading them. In practice,
it allows development teams to replace potentially obso-
lete applications bit-by-bit, and eventually eradicate them
completely. By definition, this involves replacing large com-
plicated applications with smaller composed ones, which
can results in simpler applications that are actually easier
to develop. Even in the most basic terms, smaller applica-
tions will most likely have a small code base, which in-turn,

provides a friendlier environment for testing, continuous
integration and delivery. Lastly, teams can potentially be-
come more autonomous and decide what technologies and
development style best fits the smaller application needs,
without impacting the larger overall application composed
for end-user consumption.

It is important to understand that there is no silver bullet in
any architectural style. The aforementioned advantages can
be countered with potential pitfalls. Some micro frontend
implementations can lead to a duplication of effort in the
development process, increased complexity for application
integration, and additional communication needs between
different application teams.

There are multiple technical ways to implement the micro
frontends architecture [1], according to the environment and
the expected results. For CERN accelerator controls, two
distinct approaches were investigated.

Single Page Applications
A Single Page Application (SPA) (Fig. 1) combines mul-

tiple smaller applications into one. By creating smaller ap-
plications, the different parts e.g. header, main content (dif-
ferent action pages), footer etc. can be developed separately
and then be assembled together. This can be accomplished
using different sets of tools and frameworks that best suit the
use case of the smaller applications or distinct deveopment
teams involved.

Figure 1: SPA Micro frontends architecture.

Autonomous Applications
The autonomous applications architectural style pulls the

separation one level higher. Instead of slicing the application
on each page section, it advocates that each application is
a complete entity on its own. Multiple autonomous micro
applications (Fig. 2) share common functionalities whenever
needed and are still served to the end-user as one. Each
application uses a different URI, forcing the refresh of the
page on entering each application.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO04

FR2BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1664

Software

User Interfaces & User Experience



Figure 2: URI Micro frontends architecture.

ADOPTION AT CERN
Both of the aforementioned architectural solutions were

evaluated and validated in the current infrastructure. Instead
of constructing isolated basic prototypes for testing, real
usage scenarios were selected within existing applications.
Once developments were completed, the final results were
deployed in production to perform a full and real-world
validation.

Initially, it was chosen to evaulate the first approach, us-
ing a SPA architecture, as it would provide the smoothest
end-user experience. It was decided to migrate the ”fault
creation” page of the Accelerator Fault Tracking (AFT) ap-
plication [2] to the new technology stack (Angular) and
integrate it to the existing solution (AngularJS). The new
application representing the ”fault creation” page was de-
veloped as an autonomous web component that could be
integrated into the pre-existing solution (Fig. 3) . In detail,
a custom HTML component was created based on the new
technology stack and encapsulating its own HTML structure,
styles and behavior.

Web components come with a variety of advantages. They
are known for their re-usability, enabling the encapsulation
of specific functionality, for deployment across different sec-
tions of an application or even across multiple applications.
Additionally, web components impose isolation, which helps
prevent unintended conflicts with other elements in the ap-
plication. Their interoperability is also a notable feature, al-
lowing integration with various frontend libraries and frame-
works. Lastly, web components can be seen as contributing
to maintainability, by allowing the encapsulation of com-
plex functionality into separate, manageable pieces, thereby
improving the organization and sustainability of the overall
codebase.

To evaluate the second approach, using autonomous appli-
cations, it was decided to migrate the Controls Middleware
(CMW) [3] configuration module of the Controls Config-
uration Data Editor (CCDE) [4]. The new part of the web
application was built and deployed as a separate, indepen-
dent frontend module, accessible through its own URI. Once
developed, the module was integrated with the monolithic
application, creating the end-user impression that it is actu-
ally part of it.

The Micro frontends architecture using different URIs

offers multiple advantages. It empowers independent and
isolated development on discrete modules by autonomous
teams, leading to faster development cycles and granular
deployments. It also ensures agility and scalability with
dynamic loading and isolation mechanisms in place between
the micro frontends. Sharing of common functionalities is
achieved through shared libraries, in the form of dependen-
cies, which become part of each application.

CHALLENGES
Digging deeper into the development phase, various limi-

tations and challenges were encountered. Some were com-
mon to both architectural approaches, while others were
unique to each approach.

Application Size
It quickly became apparent that the total size of the applica-

tions nearly doubled. For the SPA web components approach,
the growth in size was attributed to the combination of two
major frameworks (AngularJS and Angular), within a single
application. Each framework introduced additional libraries
that contributed to the overall increased size. In contrast, the
expansion in size when using distinct applications and URIs
was primarily due to the content downloads associated with
each microfrontend. In both scenarios, the increase in size
had the potential to result in significant delays in the initial
loading time of the applications, particularly if users had
limited bandwidth available for their internet connection,
therefore deteriorating the user experience significantly.

This decline in performance was mitigated by caching
the static content of the applications. This method entails
storing the static resources on the user’s device via their
web browser. Rather than loading the application on every
visit, the cached version is presented to the user, resulting
in significantly improved loading times (up to tenfold, de-
pending upon the user’s available bandwidth). Nevertheless,
it requires meticulous configuration to guarantee that users
consistently access the latest static content while still reaping
the advantages of caching for enhanced performance.

Look and Feel
The aesthetics of the new applications differed notably

when compared to the existing solutions (Fig. 4). The up-
dated user interfaces provide a more modern appearance
and introduce new interaction components. Therefore, it
is important to acknowledge that in certain instances, this
transition might lead to user frustration or disorientation
and impact productivity. To minimize this concern, signifi-
cant efforts were made to optimize the user experience and
address any usability issues.

State Management
State management and communication between the new

and legacy frontends posed significant challenges in both of
the architectural approaches. The integration of the new SPA
web component micro frontend into the existing workflow

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO04

Software

User Interfaces & User Experience

FR2BCO04

1665

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 3: Fault creation micro fronted web component integrated in the existing application.

Figure 4: User interface differences between monolithic application and micro frontend on CMW module.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO04

FR2BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1666

Software

User Interfaces & User Experience



created several complications in terms of interactivity. For
the distinct applications using unique URIs, when each appli-
cation functions as a standalone solution, it limits interactiv-
ity between them. Navigating between the two applications
relies solely on hyperlinks, which must be treated as external
links, directing users to an entirely distinct application.

Addressing the complexity of communication within the
SPA web components solution involved the implementation
of explicit guidelines for data sharing, event propagation,
and interaction between applications. Emphasis was placed
on granting primary control to the old application, resulting
in a streamlined and simplified approach for the new one.
Conversely, with the distinct applications using unique URIs,
it was opted to compartmentalize the new application to
such an extent that interactivity between it and the legacy
application was rendered unnecessary, apart from hyperlinks
connecting the two.

Development and Testing
It is important to note that development and testing com-

plexities saw a significant increase with both approaches.
With ongoing development in both the legacy and new appli-
cations, the development team had to manage multiple frame-
works and their differences. Additionally, cross-cutting con-
cerns like authentication and security demanded attention
on both fronts, occasionally resulting in duplicated efforts.
Testing individual micro frontends and their interactions
posed challenges, as did ensuring that changes don’t break
compatibility with other applications. While there isn’t a
definitive solution, efforts were made to increase vigilance
and incorporate more standard best practices into the devel-
opment and testing processes such as setting up automated
build and continuous integration (CI) pipelines to ensure
application builds and tests automatically with every change.

ANALYSIS OF APPROACHES
Upon the successful completion of the two proof of con-

cepts, the conclusion was that the second approach, using
distinct applications with unique URIs, aligns better with the
accelerator’s controls environment and development cycle.
Digging deeper into a comparative analysis between mono-
lithic development and the new approach, it was observed
that while there may not be significant disparities between
old and new applications in the short term, substantial differ-
ences become evident in the context of the cost and impact
of renovations to adapt to new technologies.

To illustrate, the CCDE is an application developed over
roughly 5 years. It was estimated that the renovation of
the frontend, without incorporating any additional enhance-
ments, would take around 3 years to complete. This mono-
lithic approach would constrain development of any addi-
tional application features during the renovation, as well as
locking in development resources over a long time period.

In a constantly evolving setting like accelerator controls,
a long-term commitment of this nature, which could po-
tentially encounter significant delays, might be viewed as

a relatively unnecessary step in the user’s eyes. As users
typically prioritize the quick availability of new features,
irrespective of the underlying architecture or technology.It
is also essential to acknowledge that there is always a poten-
tial risk that the selected technology stack and frameworks
could become outdated in the market, potentially stalling
any on-going multi-year monolithic renovation efforts.

In the context of the micro frontends architecture within
the same scenario, partitioning the application into smaller
units allows for their prompt deployment as they reach com-
pletion relatively quickly. This approach enables the pri-
oritization of renovations focused on delivering the most
essential features, while also offering the flexibility to con-
tinue providing features in the old application whenever
necessary.

With micro frontends, renovation becomes an integral
aspect of the application evolution, and both users and devel-
opers can experience rapid results. Overall, this approach
might slightly extend the total duration required for a com-
plete renovation when compared to a monolithic application
replacement. It can also potentially introduce new chal-
lenges related to the technologies employed. However, this
can be mitigated by adopting newer tools in subsequent mi-
cro frontend developments. Nevertheless, the micro frontend
architecture naturally introduces the challenge of maintain-
ing multiple technology stacks, which should be kept to a
minimum.

From a developers’ viewpoint, micro frontends allow them
to concentrate on their specific segment of the overall prod-
uct. This focus enables them to deliver a higher level of
testing and quality assurance, rather than grappling with an
exhaustive understanding of the overall larger application
domain.

In a micro frontend architecture, the deployment process
becomes more complicated, as a result of the growing num-
ber of applications. At CERN, this was streamlined and
automated through GitLab CI pipelines. While not currently
used, if the need presents itself, the frontends can be deliv-
ered separately depending on which is affected by any newly
introduced changes.

LESSONS LEARNED
Exploring micro frontends has provided numerous in-

sights into the entire development cycle. It has prompted
recognition of a multitude of potential challenges and a
reevaluation of development procedures. It is important
to note that all these lessons are context-specific and tailored
to the present CERN accelerator controls environment.

Minimal Technical Diversity
One of the prominent arguments in favor of micro fron-

tends, often cited, is the flexibility to use multiple frame-
works. However, it was swiftly recognized that this approach
presented more challenges than solutions. The divergence
between different teams’ preferences for various tools threat-
ened to result in an incoherent and unmanageable develop-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO04

Software

User Interfaces & User Experience

FR2BCO04

1667

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



ment landscape. Consequently, a standardized set of tools
and frameworks was established as the foundation for all
newly developed applications. This decision promotes the
cultivation of a shared knowledge base among all teams and
promotes a more collaborative development environment
overall.

Pragmatic Code Duplication
Inevitably, certain parts of the code are required by both

the micro frontends and the legacy applications. The ini-
tial direction was to extract the common code into a set
of smaller libraries to be shared between the applications.
However, although this approach worked well with the micro
frontends, it introduced unnecessary complexity and depen-
dencies when applied to the old applications. As a result,
the pragmatic decision was taken, to accept a certain level
of code duplication between the legacy applications and the
new micro frontends. Although this is not an ideal scenario,
it proved to be the most cost effective and feasible solution,
rather than attempting to force a single solution to fit all
cases.

Well Defined Application Scope
It became apparent during the early stages of development,

that defining the precise scope of each micro application was
of paramount importance. Initally it was foreseen to break
things down into numerous small fragments, but it soon be-
came clear that in the long run, this approach would lead to
a maintenance nightmare. Consequently, the micro applica-
tions were organized into manageable yet realistic chunks
based on domain-level considerations. In this scheme, all
code functionalities related to a specific domain are treated
as an application, as opposed to dividing them into individ-
ual pages or even smaller units.

Lightweight Applications
Throughout this endeavor, the unpredictability inherent

in the field of web development was once again confirmed.
It became increasingly apparent that rapid technological
evolution was the norm, with newer tools swiftly gaining
prominence, requiring developers to eventually adapt. This
realization underlines the importance of structuring the ap-
plications to be as ”lightweight” as possible, with the bulk
of the business logic residing in a more stable architectural
tier, i.e. the backend servers.

NEXT STEPS AND BEYOND
Many accelerator controls applications are currently built

on outdated frameworks and tools, making any future devel-

opment of them, at the very least, a challenging project and,
in some cases, nearly impossible. With a year of hands-on
experience in micro frontends, working on real production
applications, there is now a clear intention to transition all
controls web applications to this architecture.

A gradual migration process has already been initiated and
elements of the monolithic applications are being effectively
substituted with micro frontends. A substantial enhance-
ment in productivity and reduced delivery times has been
observed, which is positively impacting user satisfaction.

In the upcoming years, the goal is for micro frontends
to evolve into the central solution, with the intention of
migrating the majority of the applications to this architecture.
It is clear that this is a gradual and long-term undertaking,
but the advantages it brings will significantly improve the
accelerator controls environment, enabling to deliver faster
and more advanced web-based tools to the users.

SUMMARY
Micro frontends introduce a new standard in web applica-

tion development. Even in its early stages, this architecture
has already demonstrated its potential for the future devel-
opment of large control applications. Based on open-source
software and industry-standard tools, this new architecture
ensures stability and longevity, provided that the guidelines
and best practices described in this paper are followed.

The ongoing migration of monolithic CERN accelera-
tor controls web applications towards micro frontends is
progressing as planned. Based on experience gained over
the last year, these developments are expected to reduce
technical debt, prevent development stagnation in the ap-
plications, and accelerate delivery times. Though the early
phases of this endeavor are still being navigated, the future
looks promising.

REFERENCES
[1] L. Mezzalira, Building Micro-Frontends. O’Reilly Media, Inc.,

2021.
[2] C. Roderick, L. Burdzanowski, D. Martin Anido, S. Pade,

and P. Wilk, “Accelerator Fault Tracking at CERN”, in Proc.
ICALEPCS’17, Barcelona, Spain, Oct. 2017, pp. 397–400.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA013

[3] J. Lauener and W. Sliwinski, “How to Design & Implement a
Modern Communication Middleware Based on ZeroMQ”, in
Proc. ICALEPCS’17, Barcelona, Spain, Oct. 2017, pp. 45–51.
doi:10.18429/JACoW-ICALEPCS2017-MOBPL05

[4] L. Burdzanowski et al., “CERN Controls Configuration Ser-
vice - a Challenge in Usability”, in Proc. ICALEPCS’17,
Barcelona, Spain, Oct. 2017, pp. 159–165.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO04

FR2BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1668

Software

User Interfaces & User Experience


