
REACT AUTOMATION STUDIO: MODERN SCIENTIFIC CONTROL WITH
THE WEB

W. D. Duckitt. Stellenbosch University, Stellenbosch, South Africa
J. K. Abraham. iThemba LABS, Cape Town, South Africa

G. Savarese, D. Marcato. INFN Legnaro National Laboratories, Legnaro, Italy

Abstract
React Automation Studio is a progressive web application

framework that enables the control of large scientific equip-
ment through EPICS from any smart device connected to a
network. With built-in advanced features such as reusable
widgets and components, macro substitution, OAuth 2.0 au-
thentication, access rights administration, alarm-handling
with notifications, diagnostic probes and archived data view-
ing, it allows one to build modern, secure and fully respon-
sive control user interfaces and overview screens for the
desktop, web browser, TV, mobile and tablet devices. A gen-
eral overview of React Automation Studio and its features as
well as the system architecture, implementation, community
involvement and future plans for the system is presented.

INTRODUCTION
React Automation Studio (RAS) is a progressive web

application (PWA) framework that enables the control of
large scientific equipment through the Experimental Physics
and Industrial Control System (EPICS) [1].

It was born out of the need for cross-platform and cross-
device applications that deliver an instantaneous user expe-
rience for the web, desktop, on a mobile phone and on tablet
devices.

The initial open-source release [2] addressed many of the
challenges faced in creating EPICS applications for these
devices. Since then, RAS has been through another three
major revisions and is now at V4.0.2.

It supports advanced features such as reusable widgets
and components, macro substitution, Open Authorization
(OAuth) 2.0 authentication, access rights administration,
alarm-handling with notifications, diagnostic probes, load-
ing and saving of process variable (PV) data and archived
data viewing.

This enables one to build modern, secure and fully re-
sponsive control user interfaces and overview screens for
the desktop, web browser, television (TV), mobile and tablet
devices, such as the examples show in Figs. 1, 2, 3 and 4.

A general overview of RAS, its features as well as the sys-
tem architecture, implementation, community involvement
and future plans for the system is presented.

SYSTEM OVERVIEW
React Automation Studio (RAS) is a PWA frame-

work that enables the control of large scientific equip-
ment through EPICS. It is presented as a Git [3] mono-
repository [4]with multiple microservices that are container-

Figure 1: An example of real-time mobile user interface
created with RAS.

ized with Docker [5] and orchestrated with Docker Com-
pose [6].

A high level block diagram of the system, showing the in-
formation flow between the primary microservices available
in the mono-repository is shown in Fig. 5. Each of these
microservices are discussed below:

pvServer
This is the Python [7] process variable server (pvServer).

It is based on Flask-SocketIO [8] web application framework
and the PyEpics [9] framework to serve the EPICS PVs to
clients.

Communication between clients and the pvServer occurs
between the data connection wrapper in the client compo-
nents through Socket-IO [10] and REST application pro-
gramming interfaces (API). The pvServer handles EPICS
Channel Access (CA), authentication, authorisation and

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO01

Software

User Interfaces & User Experience

FR2BCO01

1643

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 2: An example complex beam line control system user interface, that can be defined from reusable widgets and
control surfaces.

database accesses from the clients.
The information flow between a client and the pvServer

occurs as follows:
A client will initially make a Socket-IO connection to the

pvServer. Depending on whether authentication is enabled,
the client will first be authenticated, thereafter the data con-
nection wrapper will emit Socket-IO events to the pvServer
requesting access to the EPICS variable.

An access token is transmitted with each request, and
depending on the client’s role and access rights granted by
the token, access is either denied or the socket connection
is placed in a Socket-IO room with read-only or read-write
privileges but with same name as PV.

Similarly, for writes to an EPICS variable, the access
token is decoded and depending on the access rights, the
client is either granted or denied permission to write to the
variable.

If access is granted, EPICS CA to the required process
variables are established and the PyEpics PV is stored in
a list, the connection and value change callbacks of the
PyEpics CA are used to emit meta-data, connection status
and value changes to the read-only and read-write rooms.
The PV name is used as the event name.

In the data connection layer of the clients components,

an event listener that is tied to the PV name is registered
on the Socket-IO connection for each instantiation of the
component. This allows efficient asynchronous update of
each listening component when the pvServer emits the PVs
event update.

React Frontend
React [11] is used to develop the frontend. It allows one

to develop in a single language, i.e JavaScript as opposed to
conventional web development in Hypertext Markup Lan-
guage (HTML), JavaScript [12] and Cascading Style Sheets
(CSS).

It allows one to create highly responsive UIs with a real-
time experience as is shown in the example of a mobile view
in Fig. 1.

Since V3.0.0, Plotly-js [13] is used as the graphing frame-
work and from the start, Material-UI [14] (MUI) is used as
the primary user interface (UI) library.

For most of the components available in RAS, a central-
ized widget component and data connection layer handles, in-
put and output, meta-data for labels, limits, precision, alarm
sensitivity and initialization from the pvServer.

Some components can handle multiple PVs such as the
graph or single PVs such as text inputs.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO01

FR2BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1644

Software

User Interfaces & User Experience



Figure 3: An example of the AlarmHandler system component showing multiple alarm areas, with active and in alarms.

For each of the components the PVs name can be declared
using macros. The macros are replaced at component instan-
tiation. This allows the design of complex user interfaces
that can be reused by simply grouping the components and
changing the global macro to point to another system. An
example of a complex user interface, one can create with
RAS and the reusable widgets for a beam line control system,
is shown in Fig. 2.

Many of the components such as TextInputs and TextOut-
puts have embedded diagnostic features such as a context
menu and diagnostic probe as shown in Fig. 6.

Styleguide
A style guide based on React Styleguidedist [15] is used

as the help function and to document the use of all the com-
ponents from the source files. The current style guide is also
interactive with a containerized demo IOC. All the proper-
ties of each of the components are documented and examples
of their usage are shown.

MongoDB
Since V2.0.0, React-Automation-Studio is integrated with

MongoDB [16] to store persistent data. The PyMongo [17]
driver is used within the pvServer to connect to a MongoDB
replica set. React hooks are available that setup a watch,
perform an update or an insert to MongoDB replica set
within the pvServer.

Demo IOCs
RAS ships containerized EPICS IOCs that contain EPICS

records used to test and evaluate each of the RAS compo-
nents as well as the complex UIs. These simulated control
system can therefore be used to evaluated RAS’s full func-
tionality before developing any code.

NGINX
Nginx [18] is a web server that can also be used as a reverse

proxy, load balancer, mail proxy and HyperText Transfer
Protocol (HTTP) cache.

Since Release 3.0.0, Nginx is included in RAS and serves
the static files for the React frontend and the style guide, it
also handles the transport layer security and performs load
balancing. Scripts were created to dynamically configure
Nginx based on the environment variables. For load balanc-
ing, Nginx balances between the multiple instances of the
pvServer microservice.

AlarmHandler
The AlarmHandler microservice forms part of the RAS

AlarmHandler component. It is discussed separately in the
AlarmHandler component section.

ACCESS RIGHTS AND ADMINISTRATION
The Uniform Resource Locator (URL), protocol selec-

tion for Transport Layer Security (TLS), authentication and

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO01

Software

User Interfaces & User Experience

FR2BCO01

1645

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 4: An example of the load save system component, showing with multiple save settings and and table showing the
live, new and saved values.

server ports are controlled through the environment vari-
ables.

The configuration can be flexible, for example, if RAS is
installed on a host where there is no need to enable authenti-
cation and it is deemed the host authentication system will
protect access, then authentication need not be turned on.

However, if RAS is exposed on a network then at least
one the modes of authentication should be enabled.

Since Release V3.0.0, RAS supports web based adminis-
tration of user access rights.

It also supports external authentication through Active
Directory and an OAuth2.0 authentication for Google and
local authentication.

For the local authentication passwords are stored in the
database using encrypted format using Bcrypt [19].

For all of the authentication modes, the client is kept au-
thenticated using encrypted Jason Web Token (JWT) based,
refresh and access tokens. When served over (Hypertext
Transfer Protocol Secure) HTTPS, the refresh tokens are
store in an encrypted cookie with HTTP only mode on the

client and the shorter lived access tokens are kept in memory.
The memory based access token is used to check autho-

rization and access rights for every PV request and write.
The access token is short lived, whilst the refresh token typi-
cally has a longer lifetime, a week for example, to allow the
user to remain logged in to the system whilst offline. The
access and refresh tokens are periodically updated and if
either access token is invalidated by the pvServer then user
will be required to log in.

Access rights can be controlled though web based admin-
istrator which contains user access groups, roles and rules
for defining PV access using regular expressions in the simi-
lar way that the EPICS Gateway [20] access is defined. All
the components in RAS currently indicate access rights to
the PV.

The access rights for each user are managed in the web
administrator. If logged in as an admin role, the web admin-
istrator is available to the user.

The system is initially seeded with default access rights.
Thereafter, further regular expression rules for user access

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO01

FR2BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1646

Software

User Interfaces & User Experience



Figure 5: A high-level system diagram of RAS.

groups (UAG) can be created and used to evaluate the read
and write access rights.

The order in which the UAGs and rules are defined are
important. The first rule applied is the DEFAULT, all users
will get this. The final access group rules to be applied are
the ADMIN rules to the applicable user groups.

For example, in the DEFAULT UAG, the rules disables
write access and enable read access for all usernames and pro-
cess variables. This is useful for creating overview screens
or sharing operator interfaces where write access is not al-
lowed.

To enable write access for everyone one could check the
write access check boxes of the DEFAULT UAG. To disable
read access and therefore prevent access by anyone by default
one could deselect the read checkboxes.

In the pvServer, for each read and write access request
of a PV, the rules in the UAG are applied if the username
is defined in the UAG and the regular expression match
function is satisfied. If the match is true, then the rule is
applied.

In theory, all regular expression searches allowed by
Python regex can be used, allowing the creation of UAGs
suited for the roles of engineers, scientists and operators.

SYSTEM COMPONENTS

Since Release 3.0.0 of RAS, system components for alarm
handling, archived data viewing and loading and saving of
data have been included in RAS. Each of these components
are discussed below:

Alarm Handler
The Alarm Handler, shown in Fig. 3, allows users to

configure all aspects of the alarms and search through the
entire alarm log. Alarm areas, sub-areas and PVs can also
be added/removed from the front end by alarm Admin role
users.

The Alarm Handler can be initialized through JSON files
that populate the MongoDB alarm handler database. This
database is also used to persist all alarm events and activity
logs.

A user notification platform has also been created for the
alarm handler. This platform allows a user to target specific
PVs to be notified about using JavaScript regular expressions.
Users can be notified via email and Signal messenger.

The Alarm Handler can be built into RAS system, for
convenience a standalone Alarm Handler project [21] also
exists to deploy the Alarm Handler site wise at facilities.

Archiver Data Viewer
The Archiver Data Viewer is an interface to display EPICS

archived data. It’s built with backend APIs that allow con-
nection up an EPICS archiver. The component allows one
to view the live values and the historical data of PV. A valid
archiver URL needs to be provided, and the viewer will
indicate if a connection can’t be established to the PV’s
archived data. For demo purposes, the RAS project provides
a containerized demo EPICS archiver [22].

Load Save Component
The Load Save Component is built on a RAS based fron-

tend that connects to the MongoDB database that contains
the saved settings data. An example Load Save user inter-
face is show in Fig. 4. The live values can be saved with
along with metadata and the saved settings data can then be
written to live processes variables in a controlled way by
first loading the saved values to new values and then finally
writing the new values to PV values. The life-cycle of the
saved settings can also be managed on the advanced tab.

DEPLOYMENT AND ORCHESTRATION
RAS have been containerized with Docker, and a sole

prerequisite to install the system is Docker. Users are encour-
aged to read the full documentation [4] as multiple Docker
Compose configurations exist in the mono-repository, to
bring up the microservices in a development or production
mode.

COMMUNITY INVOLVEMENT AND
FUTURE PLANS

Since the open-sourcing of the initial release of RAS [2],
RAS has been through another 3 major versions and is now
at V4.0.2. Only through community involvement, has it been
possible to keep track and stay up to date with the JavaScript
and Python frameworks behind the scenes. RAS has been
deployed in various forms at several laboratories [2, 23–25].

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO01

Software

User Interfaces & User Experience

FR2BCO01

1647

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 6: An example user interface showing the built-in diagnostic probes context-menu on the left and the pop-up
diagnostics probe window on right.

We encourage other EPICS community users to test and
evaluate RAS, contribute to features and to get involved on
the Git repository [4].

CONCLUSION
The current React-Automation-Studio (RAS) architecture

and features have been presented. Additional features, such
as, Open Authorization (OAuth) 2.0 authentication, access
rights administration, alarm-handling with notifications load-
ing and saving of process variable (PV) data and archived
data viewing have been added to the system since the initial
release, have been discussed. We encourage other EPICS
community users to test and evaluate RAS, contribute to
features and to get involved on the Git repository [4].

REFERENCES
[1] EPICS, https://epics.anl.gov/
[2] W. Duckitt and J. Abraham, “React Automation Studio: A

New Face to Control Large Scientific Equipment”, in Proc.
Cyclotrons’19, Cape Town, South Africa, 2020, pp. 285–288.
doi:10.18429/JACoW-Cyclotrons2019-THA03

[3] Git, https://git-scm.com/
[4] React-Automation-Studio V4.0.2, https://github.
com/React-Automation-Studio/React-Automation-
Studio/tree/V4.0.2

[5] Docker: Accelerated Container Application Development,
https://www.docker.com/

[6] Docker Compose overview | Docker Docs, https://docs.
docker.com/compose/

[7] Python, https://www.python.org/
[8] Flask-SocketIO, https://flask-socketio.
readthedocs.io/en/latest/

[9] PyEpics-Epics Channel Access for Python, https://
pyepics.github.io/pyepics/

[10] Introduction | socket.io, https://socket.io/docs/v4/
[11] React, https://react.dev/
[12] Javascript | mdn, https://developer.mozilla.org/en-

US/docs/Web/JavaScript

[13] Plotly JavaScript graphing library in JavaScript, https://
plotly.com/javascript/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO01

FR2BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1648

Software

User Interfaces & User Experience



[14] MUI: The React component library you always wanted,
https://mui.com/

[15] React Styleguidist: Isolated React component development
environment with a living style guide | React Styleguidist,
https://react-styleguidist.js.org/

[16] MongoDB, https://www.mongodb.com/
[17] PyMongo, https://pymongo.readthedocs.io/en/

stable/

[18] Advanced Load Balancer, Web Server, & Reverse Proxy -
NGINX, https://www.nginx.com/

[19] Bcrypt, https://pypi.org/project/bcrypt/
[20] EPICS PV Gateway, https://epics.anl.gov/

extensions/gateway/index.php

[21] React-Automation-Studio-Alarm-Handler-Standalone,
https://github.com/React-Automation-Studio/
React-Automation-Studio-Alarm-Handler-
Standalone

[22] React-Automation-Studio-Demo-Archiver, https:
//github.com/React-Automation-Studio/React-
Automation-Studio-Demo-Archiver

[23] A. Havranek et al., “Conceptual design of the COMPASS-U
control systems”, Fusion Eng. Des., vol. 170, p. 112 550,
2021. doi:10.1016/j.fusengdes.2021.112550

[24] K. Yan et al., “High-voltage detuning power system
of HIRFL-CSRm electron cooler for Dielectronic-
Recombination experiments”, Nucl. Instrum. Methods Phys.
Res. A, vol. 1046, p. 167 699, 2023.
doi:10.1016/j.nima.2022.167699

[25] P. Weigel et al., “The EPICS control system for IsoDAR”,
Nucl. Instrum. Methods Phys. Res. A, vol. 1056, p. 168 590,
2023. doi:10.1016/j.nima.2023.168590

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO01

Software

User Interfaces & User Experience

FR2BCO01

1649

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


