©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JAColW-ICALEPCS2023-FR2A002

A DIGITAL TWIN FOR NEUTRON INSTRUMENTS

S. Nourbakhsh*, Y. Le Goc, P. Mutti
Institut Laue-Langevin, Grenoble, France

Abstract

Research infrastructures and facility users have manifested
an increasing interest in data from virtual experiments. Sim-
ulated data are an important ingredient for instrument scien-
tists to develop and optimize current and future instruments,
for external users to train in the usage of the instrument
control system (ICS), for scientists in quantifying and re-
ducing instrumental effects when analysing acquired data.
Furthermore large sets of simulated data are also a necessary
ingredient for the development of surrogate models for faster
and more accurate simulation, reduction and analysis of the
data.

The development of a Digital Twin (DT) of an instrument
can answer such different needs with a single unified ap-
proach wrapping in a user-friendly envelop the knowledge
about the instrument physical description, the specific of
the simulation packages and their interaction, and the high
performing computing setup.

In this article we will present the general architecture of
the DT prototype developed at the Institut Laue-Langevin
(ILL) in the framework of the PANOSC European project
in close collaboration with other research facilities (ESS,
European XFEL). The communication patterns (based on
ZeroMQ) and interaction between the NOMAD control sys-
tem, simulation software (McStas), instrument description
and configuration, process management (Cameo) will be
detailed.

The adoption of FAIR Principles (Findability, Accessibil-
ity, Interoperability, and Reusability) for data formats and
policies in combination with open-source software make it
a sustainable project both for development and maintenance
in the mid and long-term.

INTRODUCTION

The development of a DT at the ILL can play a significant
role in better preparation of experiments ahead of time and
hence either reduce the amount of beam time needed for
each experiment or an improvement in the acquired data
with better suited instrument settings for the specific experi-
ment. The objective is to enrich the offer of user tools with
the possibility to run a virtual experiment with an ILL in-
strument. ILL’s DT is designed to be used by users with no
knowledge about simulations, providing a user experience
almost unchanged with respect to what they get when run-
ning a real experiment. All technicalities are hidden from
the user behind the familiar ICS interface where both the
instrument configuration and acquisition workflow are set up.
Simulated data are provided by the ICS in the same format
as the real data, with no additional step to be taken before

* nourbakhsh @ill.fr
FR2A002
1626

undergoing the reduction and analysis. A further require-
ment, in order to have a long term sustainability of the DT, is
to use of state-of-the-art simulation software adopted by the
neutron community and to make publicly available the in-
strument description. The simulation experts’ feedback and
contribution can play a major role in the improvement of the
accuracy of the simulations, while keeping orthogonal the
development and maintenance of the DT implementation.
The DT of an instrument would be able to serve for sev-
eral purposes: training new ILL users to the ICS or current
users to a particular instrument configuration settings and
capabilities; studying and optimizing of instrument settings
for specific figure of merit; improving analyses with better
understanding of some background sources and uncertain-
ties; or enriching proposals for demanding beam time with
results from simulated data with the specific instrument.

DIGITAL TWIN IMPLEMENTATION

(7

NOMAD Server

' Instrument k Instrument
|

' Module J‘ Hardware

:’Simulation !

! Module «——{ DT server
1

Simulation
executables

Figure 1: Overview of the logical elements and their com-
munication links. Highlighted in bold are the DT specific
parts.

Reduction;
analysis

The DT is composed by three logical components: a simu-
lation executable provided by the chosen simulation software,
a client application programming interface (API) used by
the ICS (acting as a DT client) and a central unit linking
those two parts (DT server). An overview of the logical
elements and communication links in the ILL’s architecture
is shown in Fig. 1. NOMAD [1] is the instrument control
software developed and used at ILL for the data acquisition
and instrument control. Its core is represented by a C++
server that communicates with the instrument hardware with
specific modules. The interaction with the user happens via
NOMAD client (JAVA application). The integration of the
DT into NOMAD is achieved adding a module to the ICS
to communicate with the DT server and replacing the com-

System Modelling

Digital Twins & Simulation

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JAColW-ICALEPCS2023-FR2A002

NOMAD Server -

SIM Module =~ ~

|__ 5 SIM server

E _{Cameo Responder}

Cameo Requester [
1

send request

_ e e e e — - -

[Cameo Subscriber

_______________ -

pull results

(.

Scheduler

Cameo Publisher

start parallel
— | Simulation

executables

read result

J

Figure 2: Schematic of the communications.

munication with the instrument hardware. The DT server is
seen by the ICS as the instrument hardware would be. As
such, the simulated data returned by the DT are then treated
by the ICS as the real data.

Simulation Software and Instrument Description

At the time of writing the simulation software used is
McStas [2-6], but the architecture allows the expansion with
different simulation packages. The instrument has to be de-
scribed according to chosen simulation software. McStas
requires its own meta-language, that then it transforms into
a C program that is further compiled as single executable.
It generates single neutrons with their properties (position,
velocity, polarization, travel time) from the source and traces
them to the final detector through the different components
undergoing absorptions or modifications caused by reflec-
tions, polarizations, scatterings. When reached, detector
components record in text files the neutron counts and prop-
erties. The process is repeated for each neutron. Instrument
components (sources, optical elements, samples, detectors)
are configurable. When describing an instrument, compo-
nent parameters can be set as function of command-line
arguments of the executables.

The very first instrument description requires a close col-
laboration between a McStas expert and the instrument re-
sponsible at the institute. This collaboration provides both
the deep insights of the specific instrument and the expertise
in the way to simulate it. It is published in the “instru-
ment database” github repository! set up by the PANOSC [7]
WP5. The repository and its python API allow the storage of
multiple versions of the same instrument, representing real
instrument configurations at different periods in time. The
version control of the description is provided by Git [8] and
github allows the setup of continuous integration tests, issue
tracking and public contribution from the community of sim-
ulation experts that will have access to the most up-to-date
version of the description used by the DT. The description of
multiple instruments is also simplified by using the McStass-
cript [9] python library instead of the McStas meta-language.
One immediate advantage of McStasscript is the possibility
to run the simulation in a jupyter notebook, allowing a larger

! https://github.com/PaNOSC-ViNYL/instrument_database
System Modelling

Digital Twins & Simulation

user base to potentially run simulation not only from their
machines but also from the cloud. When compiling the DT
components, the latest version of the instrument descriptions
are retrieved from the public repository, compiled and the
executables are packaged, ready to be installed and executed.

The Client

The client API has been designed to standardize the re-
quest and result messages sent to and received from the
simulation server. On the ICS side, the instrument param-
eters required by the simulation are known to the API and
hence a simulation request is enforced to provide all the nec-
essary information. The message is then formed by the API
ready to be sent to the server. Messages from the DT server
are decoded by the API providing a standard interface to
obtain the status of the request, the status of the simulation
and the data. The implementation of the communication is
left to the client using the Cameo [10] API as described in
more details in the following.

The DT Server

The simulation server is the core of the DT. It waits for
simulation requests, queues them, it manages the simulation
execution and returns the results once available. The simu-
lation server acts as a smart simulation scheduler, re-using
previous simulation results as much as possible. An instru-
ment configuration file, loaded by the DT server, contains the
information about the matching between the ICS parameter
names and the simulation executable inputs, making possible
the replacement of McStas with other simulation softwares.
The DT server can be configured to be started by the ICS
or can run as a service. In either way, multiple ICSs can
connect to a single DT server and place a simulation request.
It is possible to configure the DT to queue them, or run in
parallel. For each request, a dedicated scheduler is created
in a separate thread, managing, in a totally independent way,
each simulation request.

Communication and Interactions

The DT server is started by the ICS when the user acti-
vates the simulation module. The communication between

FR2A002
1627

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICS and server is performed using two different communica-
tion patterns: requester-responder for the simulation request,
publisher-subscriber for the simulation results. Both com-
munication and application management are provided by the
Cameo middleware. It consists in a JAVA server, managing
a set of applications. Processes can be started by the user
from its command-line interface or by other applications
via its JAVA, C++ or python APIs. Multiple servers can
run on different machines and interact with each other al-
lowing management and communications between remote
machines. Cameo is based on ZeroMQ [11] and provides
among other things a high level C++ classes simplifying the
implementation of the requester-responder and publisher-
subscriber communication patterns between applications.
The communication process between the ICS and the DT is
shown in Fig. 2. In the DT design, the ICS server, the DT
server and the simulation executables can run on different
machines, increasing significantly the deployment flexibility
by using bare metal or virtual machines or any combination
of the two. The process is started by the ICS that composes
the simulation request using the DT client API. The ICS use
a requester that sends the request and receive the acknowl-
edge message from the server. If there is a positive answer
about the simulation starting, a subscriber is put in waiting
for results from the publisher on the server side. The DT
server publishes not only the final data, but also the status
of the ongoing simulation and data with partial statistics.
The user is then able to see the simulated data with improv-
ing statistics and decide to eventually stop the simulation if
satisfied or if a mistake in the configuration is detected.

Smart Simulations

The DT’s user experience would be a success only if the
virtual experiment acquisition time is comparable or even
faster than the real one. The sample’s scattering cross section
has no impact on the simulation execution time, thanks to
the design of McStas, making it very interesting for the user
to use the DT for experiments that might require very long
acquisition times. A limiting factor is represented instead by
the number of optical elements between the source and the
detector, affecting the number of effective neutrons reaching
the detector, reduced even by several order of magnitudes.
A strategy for parallel processing and for reducing the re-
simulation of lost neutrons has been put in place.

Parallelization Neutrons in a ray tracing simulations
are completely stochastically independent objects. A given
number of neutrons can be simulated as multiple execu-
tion of the same simulation, with appropriate initialization
of the seed of the random number generator. As such, no
special library is needed for higher parallelization of the sim-
ulation with the execption of correctly merging the results.
The scheduler plays a central role in dispatching multiple
execution of the simulation and merging the results. The
simulation process is split into jobs with fixed number of
neutrons and known execution time. They are queued for
parallel processing based on the available resources in order

FR2A002
1628

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JAColW-ICALEPCS2023-FR2A002

to obtain larger statistics. As soon as new jobs with neutrons
reaching the detector are finished, the results are merged and
sent by the publisher as an update. This mechanism allows
the user to obtain incrementally more detailed results as the
simulation proceeds. To ensure the re-use of previously sim-
ulated jobs, a pre-defined sequence of seeds is used ensuring
the full reproducibility of the data in subsequent simulations
and the stochastically independence of different jobs.

Staging When describing an instrument, particular care
has been put in splitting an instrument in different segments.
The segment executables are run one after the other in order
to get the full path of a neutron from the source to the detec-
tor. Neutron states are saved at the end of each segment in
an MCPL [12, 13] file and then read back from the next seg-
ment. This way, the simulation is split into multiple stages,
each simulating one segment of the instrument with the asso-
ciated instrument parameters. The scheduler is aware of the
number of stages, the name of the corresponding executa-
bles, and the list of parameters affecting the specific stage.
This information is provided by a JavaScript Object Notation
(JSON) file read by the DT server at startup. The staging
allows the re-use of previously simulated stages whenever
the relevant instrument settings are the same, mitigating the
issue of long beam lines. For instruments where the experi-
ment requires scanning of one or a set of parameters, it is
possible that only few settings of the optical elements at the
end of the beam line are changed. This strategy becomes
extremely effective in these cases, reducing the simulation
time of the second and following scan points by order of
magnitudes.

CONCLUSION

In this article a Digital Twin that allows to run virtual
experiments with ILL’s instruments has been presented. It
is a tool that does not require any knowledge about neutron
physics nor simulation. The modular design allows the in-
tegration in any instrument control system, the adoption of
different simulation software and the execution on remote
machines of the different components. The user can start
using the tool almost immediately if they are already famil-
iar with the instrument control system that is their single
entry point. Sustainability of the project is guaranteed by
the involvement of the instrument scientists in mantaining
an up-to-date and accurate description of the instrument and
the wider simulation expert community in testing, debug-
ging, improving the simulation description accuracy and
performance. The release of the instrument description in
a central and public repository plays a crucial role in this
respect. Ideas about parallelization (specific for ray tracing
simulations) and instrument simulation sectioning have also
be described and could be adopted also in other contests for
Digital Twins for photon sources.

System Modelling

Digital Twins & Simulation

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7

(1]

(2]

(3]

(4]

(3]

ISSN: 2226-0358

REFERENCES

P. Mutti et al., “Nomad — more than a simple sequencer”, in
Proc. ICALEPCS’11, Grenoble, France, Oct. 2011, pp. 808—
811.

K. Lefmann and K. Nielsen, “McStas, a general software
package for neutron ray-tracing simulations”, Neutron News,
vol. 10, no. 3, pp. 20-23, 1999.
doi:10.1080/10448639908233684

P. Willendrup, E. Farhi, and K. Lefmann, “Mcstas 1.7 - a new
version of the flexible monte carlo neutron scattering pack-
age”, Phys. B: Condens. Matter, vol. 350, no. 1, Supplement,
pp- E735-E737, 2004.
doi:10.1016/j.physb.2004.03.193

P. Willendrup, E. Farhi, E. Knudsen, U. Filges, and K. Lef-
mann, “McStas: Past, present and future”, J. Neutron Res.,
vol. 17, pp. 35-43,2014. doi:10.3233/INR-130004

P. K. Willendrup and K. Lefmann, “McStas (i): Introduc-
tion, use, and basic principles for ray-tracing simulations”, J.

System Modelling

Digital Twins & Simulation

ICALEP(S2023, Cape Town, South Africa

(6]

(7]
(8]
(9]
(10]
(11]
[12]

(13]

JACoW Publishing
doi:10.18429/JAColW-ICALEPCS2023-FR2A002

Neutron Res., vol. 22, pp. 1-16, 2020.
doi:10.3233/INR-190108

P. K. Willendrup and K. Lefmann, “McStas (ii): An overview
of components, their use, and advice for user contributions”,
J. Neutron Res., vol. 23, pp. 7-27, 2021.
doi:10.3233/INR-200186

Jhttps://www.panosc.eu/

Git, https://git-scm.com/

McStasScript, doi:10.5281/zenodo.6560751
Cameo, https://code.ill. fr/cameo/cameo
ZeroMQ, http://www.zeromq.org/

T. Kittelmann, E. Klinkby, E. Knudsen, P. Willendrup, X. Cai,
and K. Kanaki, “Monte Carlo Particle Lists: MCPL”, Comput.
Phys. Commun., vol. 218, pp. 17-42, 2017.
doi:10.1016/j.cpc.2017.04.012

MCPL, https://mctools.github.io/mcpl/

FR2A002
1629

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

of
©

