Title |
Temperature Control of Crystal Optics for Ultrahigh-Resolution Applications |
Authors |
- K.J. Gofron
ORNL, Oak Ridge, Tennessee, USA
- Y.Q. Cai, D.S. Coburn, A. Suvorov
BNL, Upton, New York, USA
|
Abstract |
The temperature control of crystal optics is critical for ultrahigh resolution applications such as those used in meV-resolved Inelastic Scattering. Due to the low count rate and long acquisition time of these experiments, for 1-meV energy resolution, the absolute temperature stability of the crystal optics must be maintained below 4 mK to ensure the required stability of lattice constant, thereby ensuring the energy stability of the optics. Furthermore, the temperature control with sub-mK precision enables setting the absolute temperature of individual crystal, making it possible to align the reflection energy of each crystal’s rocking curve in sub-meV resolution thereby maximizing the combined efficiency of the crystal optics. In this contribution, we report the details of an EPICS control system using PT1000 sensors, Keithley 3706A 7.5 digits sensor scanner, and Wiener MPOD LV power supply for the analyzer crystals of the Inelastic X-ray Scattering (IXS) beamline 10-ID at NSLS-II**. We were able to achieve absolute temperature stability below 1 mK and sub-meV energy alignment for several asymmetrically cut analyzer crystals. The EPICS ePID record was used for the control of the power supplies based on the PT1000 sensor input that was read with 7.5 digits accuracy from the Keithley 3706A scanner. The system enhances the performance of the meV-resolved IXS spectrometer with currently a 1.4 meV total energy resolution and unprecedented spectral sharpness for studies of atomic dynamics in a broad range of materials.
|
Funding |
This work was supported by the U.S. Department of Energy, Office of Science, Scientific User Facilities Division under Contract No. DE-AC05-00OR22725 |
Paper |
download TUPDP132.PDF [1.135 MB / 4 pages] |
Poster |
download TUPDP132_POSTER.PDF [0.804 MB] |
Cite |
download ※ BibTeX
※ LaTeX
※ Text/Word
※ RIS
※ EndNote |
Conference |
ICALEPCS2023 |
Series |
International Conference on Accelerator and Large Experimental Physics Control Systems (19th) |
Location |
Cape Town, South Africa |
Date |
09-13 October 2023 |
Publisher |
JACoW Publishing, Geneva, Switzerland |
Editorial Board |
Volker RW Schaa (GSI, Darmstadt, Germany); Andy Götz (ESRF, Grenoble, France); Johan Venter (SARAO, Cape Town, South Africa); Karen White (SNS, Oak Ridge, TN, USA); Marie Robichon (ESRF, Grenoble, France); Vivienne Rowland (SARAO, Cape Town, South Africa) |
Online ISBN |
978-3-95450-238-7 |
Online ISSN |
2226-0358 |
Received |
28 September 2023 |
Revised |
09 October 2023 |
Accepted |
30 November 2023 |
Issued/td>
| 10 December 2023 |
DOI |
doi:10.18429/JACoW-ICALEPCS2023-TUPDP132 |
Pages |
899-902 |
Copyright |
Published by JACoW Publishing under the terms of the Creative Commons Attribution 4.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI. |
|