Title |
Commissioning and Optimization of the SIRIUS Fast Orbit Feedback |
Authors |
- D.O. Tavares, M.S. Aguiar, F.H. Cardoso, E.P. Coelho, G.R. Cruz, A.F. Giachero, L. Lin, S.R. Marques, A.C.S. Oliveira, G.S. Ramirez, É.N. Rolimpresenter, L.M. Russo, F.H. de Sá
LNLS, Campinas, Brazil
|
Abstract |
The Sirius Fast Orbit Feedback System (FOFB) entered operation for users in November 2022. The system design aimed at minimizing the overall feedback loop delay, understood as the main performance bottleneck in typical FOFB systems. Driven by this goal, the loop update rate was chosen as high as possible, real-time processing was entirely done in FPGAs, BPMs and corrector power supplies were tightly integrated to the feedback controllers in MicroTCA crates, a small number of BPMs was included in the feedback loop and a dedicated network engine was used. These choices targeted a disturbance rejection crossover frequency of 1 kHz. To deal with the DC currents that build up in the fast orbit corrector power supplies, a method to transfer the DC control effort to the Slow Orbit Feedback System (SOFB) running in parallel was implemented. This contribution gives a brief overview of the system architecture and modelling, and reports on its commissioning, system identification and feedback loop optimization during its first year of operation.
|
Paper |
download MO3AO03.PDF [1.061 MB / 8 pages] |
Slides |
download MO3AO03_TALK.PDF [78.392 MB] |
Cite |
download ※ BibTeX
※ LaTeX
※ Text/Word
※ RIS
※ EndNote |
Conference |
ICALEPCS2023 |
Series |
International Conference on Accelerator and Large Experimental Physics Control Systems (19th) |
Location |
Cape Town, South Africa |
Date |
09-13 October 2023 |
Publisher |
JACoW Publishing, Geneva, Switzerland |
Editorial Board |
Volker RW Schaa (GSI, Darmstadt, Germany); Andy Götz (ESRF, Grenoble, France); Johan Venter (SARAO, Cape Town, South Africa); Karen White (SNS, Oak Ridge, TN, USA); Marie Robichon (ESRF, Grenoble, France); Vivienne Rowland (SARAO, Cape Town, South Africa) |
Online ISBN |
978-3-95450-238-7 |
Online ISSN |
2226-0358 |
Received |
06 October 2023 |
Revised |
09 October 2023 |
Accepted |
14 November 2023 |
Issued/td>
| 03 December 2023 |
DOI |
doi:10.18429/JACoW-ICALEPCS2023-MO3AO03 |
Pages |
123-130 |
Copyright |
Published by JACoW Publishing under the terms of the Creative Commons Attribution 4.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI. |
|