A Python Finite State Machine
Library for EPICS

Dr. Marcato Davide
INFN — Legnaro National Laboratories
davide.marcato@lnl.infn.it

18th International Conference on Accelerator and Large Experimental Physics Control Systems

The EPICS Sequencer

- A tool to define procedures and sequences of operations
in EPICS

- State Notation Language

« To describe Finite State Machines (FSM) states and
transitions

« C-like language, transcompiled to C

light = TRUE;
pvPut(light);

- Standard tool in the EPICS community
 First proposed on the original EPICS paper
* Good performance and reliability

o
<2
=
=
=
w0
>
~
=

- Low level language
« Unfamiliar to new users

light = FALSE;
pvPut(light);

]
I
]
j
* Flexible programming model |
I
!
1
I

- Limited expandability
19 Oct
2021

Alternatives

- Vanilla PyEpics scripts
- Easy, fast to prototype

 Basic functionality

- Bluesky project

« Complete suite of tools for data acquisition,
experiment specification and orchestration.

« Advanced functionalities
* Requires a big investment into their design model

. Facility or experiment-specific tools ‘D
- Not available to smaller labs/experiments I ues k g

o
o)
i
=

=

w0

>
~
=

19 Oct
2021

Pysmlib

- A simpler alternative to the EPICS sequencer
- High level description of FSMs
- Leave implementation details to the library

- Python language
- High level language
+ Rich scientific and engineering ecosystem

« Familiar to many new users
@astropy /Ipymea

ST sunp

[h .
41 sim
@gthon Sa SIMPEQ
ZDIPY ~
@ scikit-image T 2
0 : s =
D)
l 3” ¥ NetworkX oS <2 <
/|] Jwr IIE‘EQ):]' *@" Numba and many
/’\/’\ xarray © Ssmhy i/ many more
biopython .e‘l matpl v tlib pandas ’\5_4} DASK -
o
gNumPy ﬁ pl.;lthOﬂ @Scﬂ"y ped\a\'\led d
o GO\'e S
\aﬂguag

19 Oct
2021

#! /usr/bin/python
from smlib import fsmBase, loader

FSM definition
class exampleFsm(fsmBase):
def __init__(self, name, *args, **kwargs):
super(exampleFsm, self). init_ (name, **kwargs)

Example FSM

- Subclass fsmBase
« Connect to the PVs on the constructor

W oo N O UV wWwN R

self.counter = self.connect("testcounter")
self.mirror = self.connect("testmirror")
self.enable = self.connect("testenable")

[
W N R e

self.gotoState('idle")

- Idle state
« Wait for enable

=
S

=
Ui

idle state
def idle_eval(self):
if self.enable.rising():
self.gotoState("mirroring™)

[
0 N O

- Mirroring state

« Copy the value of the counter PV to the
mirror PV

=
o]

N
o]

mirroring state
def mirroring_eval(self):
if self.enable.falling():
self.gotoState("idle")
elif self.counter.changing():
readvalue = self.counter.val()
self.mirror.put(readvalue)

NN NN NN
VA WK

N
~

enable.rising(), MIRRORING

N
(o]

Main

if _name__ == '__main__":
30 # load the fsm

31 1 = loader()

32 1.load(exampleFsm, "myFirstFsm")
33

34 # start execution

35 l.start()

[yS]
[\s]

enable.fallin
20 counter.changing()
TS

Design

Event driven FSM

Daemon-like execution flow
* Concurrent execution of multiple FSMs

Network efficiency

« Share the Channel Access PV connections
across FSMs

Inputs should not change during the state
execution

- Each input event triggers one state execution

Execute actions on state transitions
* entry, eval, exit methods

Transition from
previous state

exampleState

Transition to
next state

o
o)
i
=
=
w0
>
~
=

19 Oct
2021

Architecture

- 4 main subsystems
* Input management
- FSM execution

* Timers
- Utilities

fsmLogger fsmWatchdog loader fsmlIOs
level timers logger ios
l0g() run() timerManager get()
pushMsg() ioManager
.fsnllBase setVerbosity() I IO
. mirror_ios value
fsmTimers - logToFile() _
i currstate io
timers |0ad() f
sm
run() connect() start() o
currc
set() eval() killAll()
kill() eval_forever() update()
) epicsIO
trigger() put()
. pv
fsmTimer tmrSet(), hed val(), alarm()
pending tmrExpired() attache rising(), falling ()
expireTime processEvent() chgeb() changed)(),
fsm log() conncb() changing()
gotoState() connected(),
reset() puteb() connecting()
trigger() put()
expd() trigger()

o
<2
=
—
=
=
D)
¥
)
~
=

19 Oct
2021

Input Management

3 event types from Channel Access
« change, connection, put_complete

One PV emits an event
« The event data 1s placed on thread-safe queues

All the FSM connected to the corresponding input are executed
« Each one 1s a different thread

Each FSM keeps a local proxy of all its inputs
« fsmIO class
« Updated with the data retrieved from the queue

The current state is executed
« The triggering event type is used to check edge conditions

epicsIO

pv
attached

chgcb()
conncb()
putcb()
put()
trigger()

fsmIOs

ios

get()

fsmIlO

value
io
fsm

currcb

update()

put()

val(), alarm()
rising(), falling()

changed(),
changing()
connected(),
connecting()

o
<2
=
=
=
w0
>
~
=

19 Oct
2021

Execution Flow o

mirror _10s
1. Perform a state transition if required. In e
this case 1t also executes the _entry() connect()
method of the new state, if it’s defined. eval(
eval_forever()
2. Execute the _eval() method of the trigger()
current state. :2:2‘;;)@ .
processEvent()
3. If the user requested a state transition, 10g()
the _exit() method of the current state 1s gotoState()

executed. In this case go back to step 1
without processing a new event.

exampleState

Transition to
next state

Transition from
previous state

o
o)
i
=
=
w0
>
~
=

gotoState() automatically finds the right
methods based on the state name

19 Oct
2021

Change event example

[PyEpics] [epicslO] [fsmBase] [myFSM] [fsmIO]

[] 1

trigger()
tri
rlgger()4

chgchb()

Process D

one event()

S

R

I
1
1
- eval forever() :
1
1
1
1

reset()
process_ >
D event() L
eval() update() >
C 1
state entry() : I
state eval() Cha?g;)n g0 %
state exit() <

______________|
———mm -

19 Oct
2021

Timers

- Trigger FSM execution after a fixed time delay
* To check timeouts, perform periodic actions, wait before an action...

. Internal event of type timer_expired

- A thread manages all the timers and queues events

def move_entry(self):
self.motor.put(106)
self.tmrSet('moveTimeout’', 16)

def move_eval(self):
if self.doneMoving.rising():
self.gotoState("nextState")

elif self.tmrExpiring("moveTimeout"):

self.gotoState("error")

O

HoH R W

move the motor
Set a timer of 10s

If the motor movement completed
continue to next state

Timer explred event

go to an error state

o
<2
=
=
=
w0
>
~
=

19 Oct
2021

Utilities

* Unified interface * Load multiple * Specify PV as
to log to different FSM on a single watchdog
backends executable - A thread

* Share resources periodically

writes a value

* The PV goes into
alarm 1f no
writes occur after
a delay

User Experience

« First concept in 2016 for RF control system @ LNL

- Used for many other subsystems
« Diagnostic, ion beam sources, vacuum

- Simulators
* Replace real devices by simulating their actions on PVs

- Alarm handling

- Example: send notification via Telegram

- Beam Optimization Procedures
- BOLINA

o
o)
=
=
=
w0
>
~
=

- Useful when asynchronous interaction is expected
- Eg: user input, non-constant delays
« Trigger on the rising or falling edges of conditions

19 Oct

2021

Publishing

https://github.com/darcato/pysmlib https://darcato.github.io/pysmlib

Docs » Pysmlib overview View page source

darcato/pysmlib

A library to create event driven finite state machines

Pysmlib overview

This section will describe the standard workflow to go from an empty file editor to a running finite state machine with
pysmlib. Each step will be then explained in detail in the following sections of this documentation.

for EPICS
Define your FSM
Pysmlib lets you create finite state machines, so the first step is to adapt your algorithm to a fsm design. This means
identifying all the states required and the conditions that trigger a transition from one state to another. Furthermore, all
A 2 Q1 w2 ¥ 0 O d and Installatio the required input and outputs must be identified: the input are usually needed to determine the current state and
Contributors Used by Stars Forks 2 Pysmlib overview receive events, while the outputs are used to perform actions on the external world.

Define your FSM
Load and execute the FSM

The library is designed to be connected to EPICS PVs, so EPICS IOCs must be running with the required PVs, otherwise
the FSM will sleep waiting for the PVs to connect.

Complete example
H H 0,
pipeline | passed coverage 63.00% : ot General structure

&8s GPL-3.0 License

Each finite state machine is created as a derived class from fsmsase , which is part of pysmlib.

from snlib import fsmBase

class exampleFsn(fsmBase):
def _init_ (self, name, ‘args, *‘kwargs):
super (exampleFsm, self). init (name, **kwargs)

https://pypi.org/project/pysmli

In this snippet of code the class is declared and the parent class is initialized, passing a nane as argument which
identifies the class instance. In fact, when this code will be executed a new thread will be created for each instance of the
class.

o
<2
=
—
=
=
w0
¥
et
~
=

Never forget to include “*kwargs in the arguments of the super class as they are used by the loader .

pysmlib 3.2.0

pip install pysmlib &

Define inputs / outputs

In the class constructor the 1/0 must be defined. Note that there is no actual distinction between a input and a output,

19 Oc
2021

Conclusion

- Pysmlib: A library to develop EPICS Finite
State Machines

* Focus on simplicity
* Great expandability with Python libraries
+ Useful features for common use-cases

- Available to the whole EPICS community
« Makes no assumption
* Tested and running in production

- Future improvements
« Add support for different input types (pvAccess?)

o
<2
=
—
=
=
w0
¥
)
~
=

« Contributions are welcome

19 Oct
2021

Thank you

Davide Marcato

= DPARTIMENTO
— DI INGEGNERIA
—— DELLINFORMAZIONE

CINF

