
A Python Finite State Machine 
Library for EPICS

Dr. Marcato Davide

INFN – Legnaro National Laboratories

davide.marcato@lnl.infn.it

18th International Conference on Accelerator and Large Experimental Physics Control Systems



The EPICS Sequencer
• A tool to define procedures and sequences of operations 

in EPICS

• State Notation Language

 To describe Finite State Machines (FSM) states and 
transitions

 C-like language, transcompiled to C

• Standard tool in the EPICS community

 First proposed on the original EPICS paper

 Good performance and reliability

 Flexible programming model

• Low level language

 Unfamiliar to new users

 Limited expandability
19 Oct 

2021

P
y
sm

li
b

2



Alternatives
• Vanilla PyEpics scripts

 Easy, fast to prototype

 Basic functionality

• Bluesky project

 Complete suite of tools for data acquisition, 
experiment specification and orchestration.

 Advanced functionalities

 Requires a big investment into their design model

• Facility or experiment-specific tools

 Not available to smaller labs/experiments

19 Oct 

2021

P
y
sm

li
b

3



Pysmlib
• A simpler alternative to the EPICS sequencer

 High level description of FSMs

 Leave implementation details to the library

• Python language

 High level language

 Rich scientific and engineering ecosystem

 Familiar to many new users

19 Oct 

2021

P
y
sm

li
b

4



Example FSM
• Subclass fsmBase

 Connect to the PVs on the constructor

• Idle state

 Wait for enable

• Mirroring state

 Copy the value of the counter PV to the 
mirror PV

19 Oct 

2021

P
y
sm

li
b

5



Design
• Event driven FSM

• Daemon-like execution flow

 Concurrent execution of multiple FSMs

• Network efficiency

 Share the Channel Access PV connections 
across FSMs

• Inputs should not change during the state 
execution

 Each input event triggers one state execution

• Execute actions on state transitions

 entry, eval, exit methods

19 Oct 

2021

P
y
sm

li
b

6



Architecture

• 4 main subsystems

 Input management

 FSM execution

 Timers

 Utilities

19 Oct 

2021

P
y
sm

li
b

7



Input Management
• 3 event types from Channel Access

 change, connection, put_complete

• One PV emits an event

 The event data is placed on thread-safe queues

• All the FSM connected to the corresponding input are executed

 Each one is a different thread

• Each FSM keeps a local proxy of all its inputs

 fsmIO class

 Updated with the data retrieved from the queue

• The current state is executed

 The triggering event type is used to check edge conditions

19 Oct 

2021

P
y
sm

li
b

8



Execution Flow
1. Perform a state transition if required. In 

this case it also executes the _entry()
method of the new state, if it’s defined.

2. Execute the _eval() method of the 
current state.

3. If the user requested a state transition, 
the _exit() method of the current state is 
executed. In this case go back to step 1 
without processing a new event.

gotoState() automatically finds the right 
methods based on the state name

19 Oct 

2021

P
y
sm

li
b

9



Change event example

19 Oct 

2021

P
y
sm

li
b

10



Timers
• Trigger FSM execution after a fixed time delay

 To check timeouts, perform periodic actions, wait before an action...

• Internal event of type timer_expired

 A thread manages all the timers and queues events

19 Oct 

2021

P
y
sm

li
b

11



Utilities

19 Oct 

2021

P
y
sm

li
b

12

Logger

• Unified interface 
to log to different 
backends

Loader

• Load multiple 
FSM on a single 
executable

• Share resources

Watchdog

• Specify PV as 
watchdog

• A thread 
periodically 
writes a value

• The PV goes into 
alarm if no 
writes occur after 
a delay



User Experience
• First concept in 2016 for RF control system @ LNL

• Used for many other subsystems
 Diagnostic, ion beam sources, vacuum

• Simulators
 Replace real devices by simulating their actions on PVs

• Alarm handling
 Example: send notification via Telegram

• Beam Optimization Procedures
 BOLINA

• Useful when asynchronous interaction is expected
 Eg: user input, non-constant delays

 Trigger on the rising or falling edges of conditions

19 Oct 

2021

P
y
sm

li
b

13



Publishing
https://github.com/darcato/pysmlib

19 Oct 

2021

P
y
sm

li
b

14

https://darcato.github.io/pysmlib

https://pypi.org/project/pysmli
b/



Conclusion

19 Oct 

2021

P
y
sm

li
b

15

• Pysmlib: A library to develop EPICS Finite 
State Machines

 Focus on simplicity

 Great expandability with Python libraries

 Useful features for common use-cases

• Available to the whole EPICS community

 Makes no assumption

 Tested and running in production

• Future improvements

 Add support for different input types (pvAccess?)

 Contributions are welcome



Thank you
Davide Marcato


