PAUL SCHERRER INSTITUT

Babak Kalantari :: Electronics section :: AEK :: Paul Scherrer Institut

CompactPCI-Serial Hardware Toolbox for SLS 2.0

Changing to a new bus-standard

- Hardware technology at PSI is heavily based on VME (SLS, SwissFEL, HIPA/Proscan)
- \succ VME performance does not keep up with today's demand (e.g. speed, architecture)
- New projects are coming up: <u>SLS 2.0</u>
 - SLS systems were built 20 years ago
 - Many SLS hardware (VME crate, CPU's, I/O cards) already facing operatonal/availability issues
 - In 2025 that SLS 2.0 starts, our latest processing platform will be 14 years old

SwissFEL

SLS

HIPA

Changing to a new bus-standard

Core team of embedded system experts: hardware/firmware/software deciplines Considered 4 bus standards: VME, uTCA, CompactPCI-Serial, VPX

> Evaluated aspects:

- Feature & Technology
- Usage & Status Today
- Future Usage & Prespectives
- Manpower Efficiency
- Hardware Cost Efficiency

Rating: 0%=bad, 50%=not great, 100%= acceptab	le, 150%=good, 200%	150%=good, 200%=excellent					-
	VME64x	uTCA.0/AMC	uTCA.4	cPCI-Serial	VPX	Weight	
Features & Technology	124%	93%	154%	149%	102%	4	
Crate Backplane	78%	150%	175%	156%	125%	3	
Rear Transition Modules (RTMs)	88%	0%	175%	156%	0%	2	
Size	173%	100%	162%	115%	135%	2	
System Management & Interoperability	180%	95%	95%	165%	135%	2	
<u>Usage & Status Today</u>	81%	79%	64%	63%	102%	1	1
COTS Availability Today	83%	87%	99%	51%	118%	3	1
Annual Sales Volume / Market Size Today	86%	100%	50%	100%	164%	2	
Usage at Existing Facilities	75%	56%	38%	50%	44%	3	•
Future Usage & Perspectives	10%	60%	41%	99%	119%	6	·
COTS Availability 2035+	8%	40%	35%	113%	135%	3	ŀ
Annual Sales Volume / Market Size 2035+	25%	100%	50%	100%	150%	2	
Usage for New Projects 2025+	0%	50%	41%	78%	63%	2	
Man Power Efficiency	157%	54%	50%	107%	54%	4	
Hardware Cost Efficiency	125%	75%	125%	150%	75%	3	1
Overall Rating	91%	70%	83%	118%	92%		

Weight factor specifies importance of each aspect from the evaluator's view.

Ratings reflect personal views of the evaluation team members based on their experience and Know-how of the standards.

Decision for CompactPCI-Serial

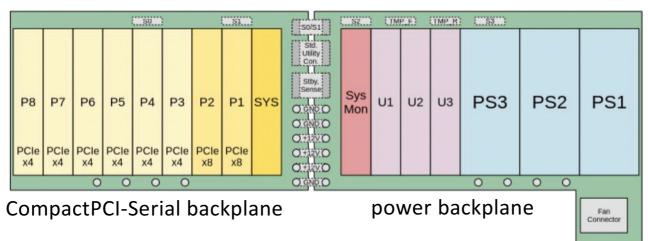
Technology trend: shifting from parallel bus architectures to switched serial interconnects (e.g. PCIe, Ethernet)

- VMEbus: obsolete, data transfer bottleneck, powered housing only
- > uTCA risks: lack of PSI-internal Know-How, IPMI complexity, small market
- ➤ VPX: lack of know-how, expensive

CompactPCI-Serial

- + Promissing future perspective
- + based on proven, wide-spread serial technologies (PCIe, Ethernet)
- + PSI-internal Know-How available (compared to uTCA)
- + high potential for synergies between PSI divisions
- + Moderate availability of modern hardware with reasonable price
- +/- Small form-factor

OpenCPSI-S recommendation

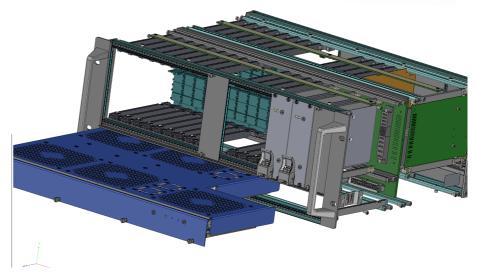

Open Common Parallel Serial Interconnect – Solution (OpenCPSI-S) is a recommendation by PSI for definition of the user I/O pins as well as a concept for power backplane.

It defines signaling and/or function of each user I/O pin to address interoperability issue. This allows PSI engineers to independently develop interoperatable boards, therefore eases collboration among PSI divisions. Currently two FPGA cards are in parallel under development in two divisions.

- Universal FPGA Board Pinout
- Minimal common pin definition for RTM's
- Scalable power supply (up to 3 PSU)
- Optional system monitor and utility slots

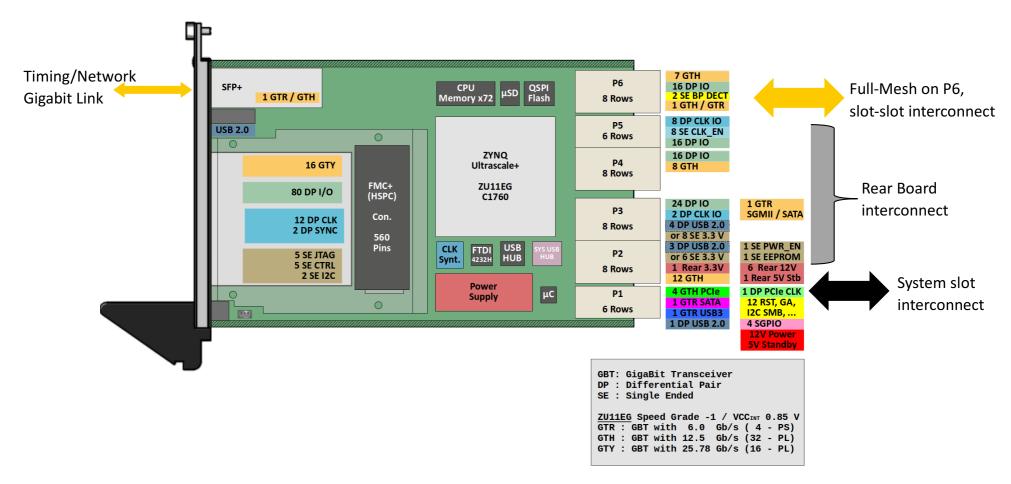
Fat Pipe Fat Pipe System Perip. Perip. Perip. Perip. Perip. Perip. Perip. Perip. Slot 0 Slot1 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 2 Full-mesh multi gigabit links I/O pins (rear, inter-slot) Standard leaves definition to the user! Interoperability issue! PCle, ... PCle - 4 5 USB SATA Ethernet - 3 - 4 - 5 - 6 -

CompactPCI-Serial backplane



OpenCPSI-S Crate

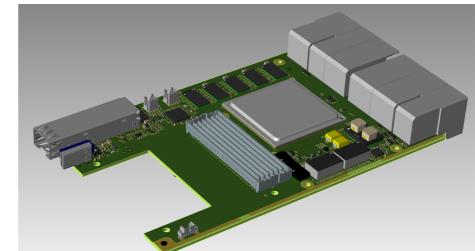
- > Development in collaboration with external partner
- > Number of improvements are applied to COTS crates
- Status: prototypes are being tested at PSI
- Extended rear depth to 160 mm
- Scalable power supply: up to 3x PSU (1000 W)
- Optimized cooling
- Easier maintenance
- Front + Rear temperature sensor array
- Noise reduction
- Standard CompactPCI-Serial backplane
- Separate power backplane
- System monitor & utility slots



Crate prototype

OpenCPCI-S FMC+ Carrier (CPSI_UFC)

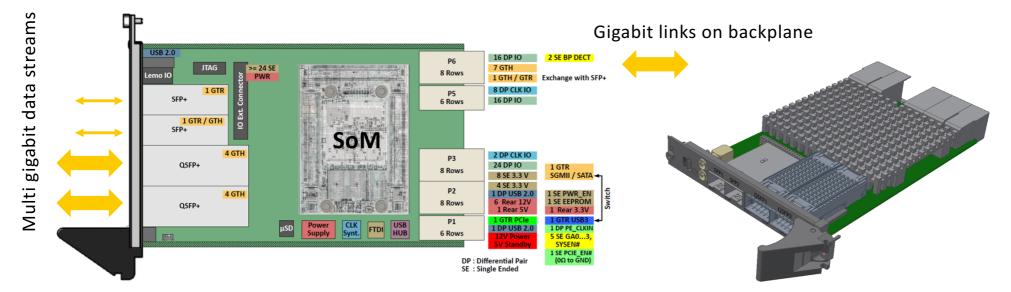
- > Mixed collaboration internal-external development in GFA division
- High-end carrier with a high performance, large Zynq US+ MPSoC (ZU11EG)
- > Application: LLRF, high-end DAQ & control (fill pattern feedback, scope recorder)


OpenCPCI-S FMC+ Carrier, Status (CPSI_UFC)

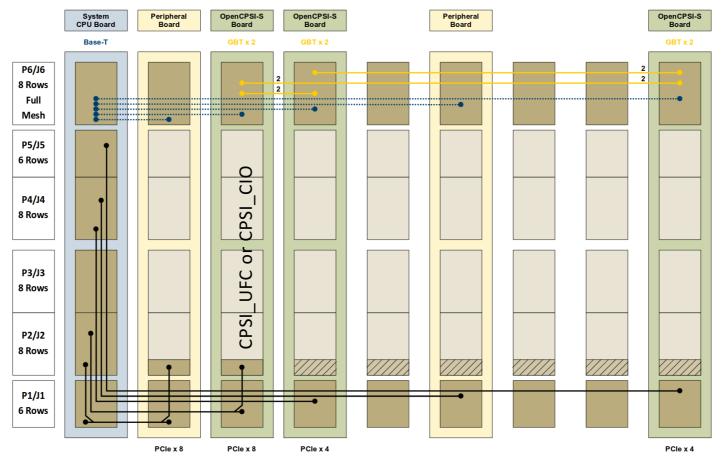
Prototypes currently in production by external partner + board bring-up

- Hardware/Software framework for functional test is in preparation
- ➢ Functional testing planned for Nov.-Dec. 2021

Prototype PCB

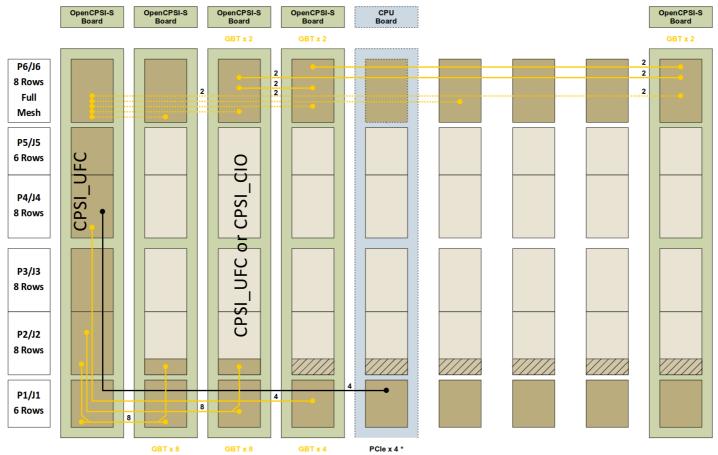


Test-Box for CPSI_UFC carrier and its backplane PCB


OpenCPCI-S COM-IO Board (CPSI_CIO)

- Under development at PSI in NUM division
- Uses commercial Enclustra SoM with Zynq US+ arch (XU1-6CG)
- > Apps: SLS2.0 Event timing, data stream processing; DAQ for SINQ instruments
- Timing, EVR: PSI Embedded VHDL component, EVM: MRF EVM port
- Prototypes expected Q4/2021

Topologies with Standard CPCI-S Backplanes

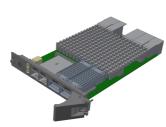

CPU-Centric System with FPGA Boards in peripheral slots

COTS and OpenCPSI-S Boards System with COTS Backplane

FPGA-Centric System with FPGA Board also in system slot

High Bandwidth Connection between OpenCPSI-S Boards with COTS Backplane

* If supported by CPU Board, Problem: PE_CLK, SSC



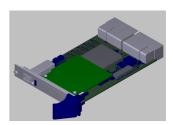
CPCI-S Toolbox Portfolio Summary


- COTS CompactPCI-Serial tools
 - System CPU: EKF SC5 FESSTIVAL, Xeon(R) 3.00GHz, Quad core, 16 GB RAM
 - XMC I/O module on XMC carriers
 - FMC/FMC+ modules (ADC, DAC, etc.)
 - COTS Crates
- OpenCPSI-S tools
 - FMC+ carrier (CPSI_UFC)
 - COM-I/O board (CPSI_CIO)
 - Various signal interfacing boards (RTM's)
 - OpenCPSI-S Crate

CPSI-S crate

CPSI_CIO

XMC I/O



FMC+ I/O

CPSI_UFC

Wir schaffen Wissen – heute für morgen

Thanks to all colleagues in GERTS standardization core team from GFA and NUM divisions as well as electronics and controls sections.

