

Prototype of White Rabbit Based Beam-Synchronous Timing Systems for SHINE

<u>P.X. Yu</u>, Y.B. Yan

Shanghai Advanced Research Institute

Chinese Academy of Sciences

G.H. Gong, Y.M. Ye

Tsinghua University

L. Zhao, J.L. Gu

University of Science and Technology of China

Outline

- Overview
- Architecture of SHINE Timing System
- Prototypes Development
- Conclusion

SHINE Project

- Shanghai High repetition-rate XFEL(X-ray free electron laser) aNd Extreme Light facility (SHINE)
- First hard X-ray FEL facility in China

Pulse duration : 1 - 100 fs Total length : 3.1 km Photon Energy : 0.4 - 25 keV Repetition : 1.0030864 MHz Underground : ~ 29m

1 GrandMaster Node, ~ 600 Slave Nodes, 3 Layers ~ 80 WRS

- 1) Beam-synchronous trigger signal distribution
 - Precise distribution and synchronization of the 1.003086MHz (1300/1296) timing signals over a long distance of about 3.1 km
- 2) Random-event trigger signal distribution
 - Extension function of the timing system
 - Various event signals, such as beam loss, machine snapshot, etc.
- 3) Data exchange between nodes
 - May be used for local beam parameter feedback

priority

- Standard Clock Transmission
 - Standard White Rabbit network operating clock 125/62.5MHz
 - If the SHINE repetition frequency is 1.0MHz,
 1.3GHz RF input signal can be divided to
 10MHz as the reference signal
 - The Salve node output the trigger signal at the specified time (1us, 2us, 3us, ...)
 - Jitter < 10 ps

- Random Trigger Distribution
 - White Rabbit Trigger Distribution (WRTD) is a generic framework for distributing triggers (events) between Nodes over a White Rabbit network.
 - For SHINE, the network bandwidth is limited, the jitter will increase
 - 10 Gigabit White Rabbit Switch, no commercial product

• Random Trigger Distribution

SHINE

- SXFEL-UF (Shanghai soft X-ray Free-Electron Laser User Facility)
- SVEC VME with FMC TDC 1ns 5cha and FMC DEL 1ns 4cha

9

- **RF** signals Distribution
 - All nodes have the same reference frequency and time
 - Master phase locks its DDS to the RF input
 - Broadcast the DDS control words, including a TAI timestamp
 - All receivers update their DDSes with the received
 - control word at the same moment (+some fixed delay)

Can the sine be converted to editable pulse signal?

Phase

RF input

Distribution of RF signals using WR, ICALEPCS 2017

Feedback frequency (equal to RF input when locked)

DDS

tune

125 MHz reference

RF output

TAI time

• Non-Standard Clock Transmission

SHINE

- The repetition frequency of SHINE is 1.0030864MHz (1300/1296)
- 1.3GHz RF reference signal can be divided to 1.0030864MHz as a reference signal

Can the White Rabbit frequency be changed from 125/62.5MHz to 125.385/62.693MHz?

Prototype

- 1) Beam-synchronous trigger signal distribution
 - Master node: reference signal and PPS signal
 - Slave node: machine clock with division or mask, adjustable delay and pulse width
- 2) Random-event trigger signal distribution
 - Master node: 4 channals pulse inputs < 1 kHz
 - All slave nodes output at the same time

(+ fixed delay)

Road Map

Design

Technical route selection Prototype design review Potential vendor selected Verification

Non-standard clock verification

Pulse signal distribution verification

Artix-7 and Kintex-7 development and debug

Road Map

Design

Hardware version 1 design and testing

Hardware version 2 design and testing

Continuous adjustment and optimization

Integration debug and performance testing (master - switch - slave nodes) Firmware and software development

Prototype I

- Minimize modifications to the standard White Rabbit Protocol
- Replace the VCXO(Voltage- Controlled Crystal Oscillator) using customed 27.083MHz
 oscillator
- Operating frequency is 67.708MHz (1.003086MHz x 135/2)
- Change the frequency to 64.197530MHz (1.0030864MHz x 64, 52/81 x 25MHz x 4)

- Easy to generate 2^N divisions and obtain machine clocks
- Clear proportional relationship between the pseudosecond and the standard second

Standard time : [seconds : nanoseconds : subnanoseconds]

Non-standard time : [pseudo-seconds (~0.9969s) : clock integer period (~15.5769ns) : phase]

Prototype I

- Beam-synchronous trigger signal distribution
 - Jitter < 10ps (3 Layers WRS, 5km)</p>
- Random-event trigger signal distribution
 - Jitter < 60ps</p>

SHINE

Jitter between the slave node outputs and reference signal : 9.535ps Jitter between slave nodes outputs : 4.791ps

Prototype II

- Clock (125/62.5MHz) distribution and synchronization based on standard White Rabbit network
- The DDS (Direct Digital Synthesis) and D flipflops (DFFs) are adopted for RF signal transfer and pulse configuration.
- Off-chip delay for beam-synchronous trigger and on-chip delay for random-event trigger

Prototype II

- Beam-synchronous trigger signal distribution
 - Jitter < 20ps (1 Layer WRS, 5km)</p>
- Random-event trigger signal distribution
 - Jitter < 35ps

Master Node

Slave Node

Conclusion

- Two prototype systems were developed, both containing three functions: beamsynchronous trigger signal distribution, random-event trigger signal distribution and data exchange between nodes.
- The non- standard clock transmission was proposed and verified.
- The prototype development has just been completed and we will do further test and evaluation for the SHINE project.

Thanks for your attention !