

The State of Containerization in CERN Accelerator Controls

Rémi Voirin 21/10/2021 - ICALEPCS 2021

Containers in Controls workshop in Brooklyn

ICALEPCS 2019

1 day

30 attendees

6 presentations

2 group work sessions

3 hands-on exercices

Outline

Technical background

Container availability

Future plans

Table of Contents

Technical background

Container availability

Future plans

Simplified view of a container

Container

Application and dependencies

Containerization layer

System layer or PID 1

Operating system

Hardware

Isolation with namespaces:

- Filesystem
- Process ID
- Network
- ...

Industry use cases

Containers are becoming the norm in the industry for:

- Idempotent execution between development and operational environments
- Streamlining the use of DevOps tools
- Managing application dependencies
- Encapsulating legacy solutions

Table of Contents

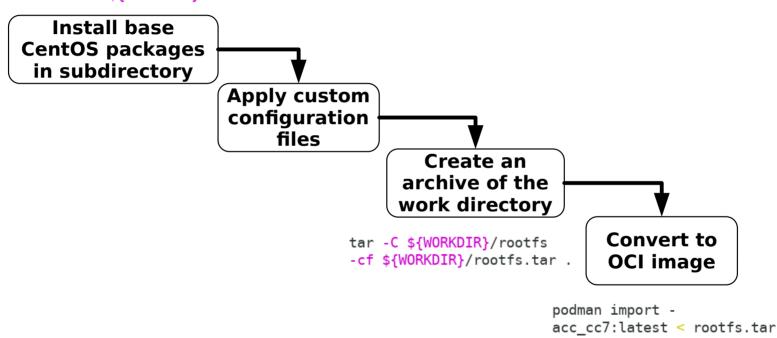
Technical background

Container availability

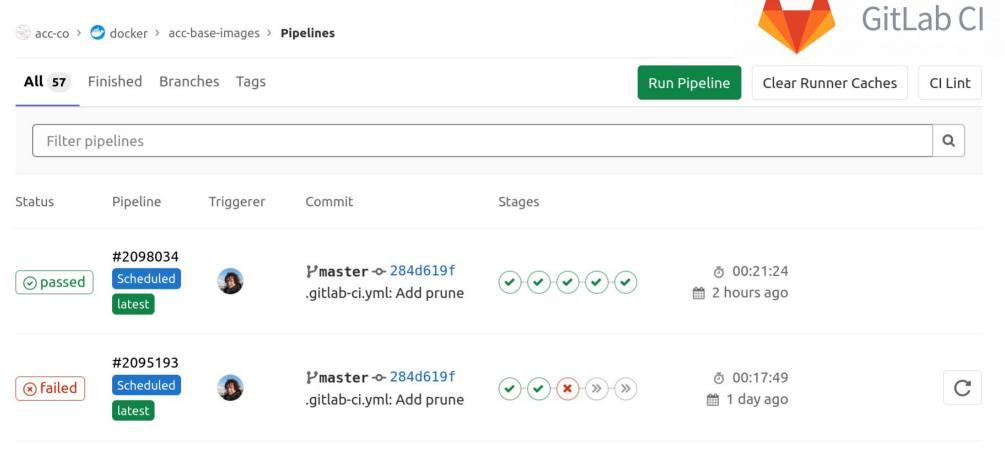
Future plans

Container project: overview

Purpose: offer the ability to run containers on servers and technical consoles


What we need:

- Base images that our developers can rely on
- An image registry to store container images
- A container engine to run containers on hosts

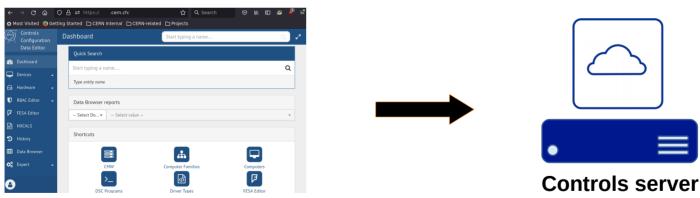

Container project: base images

dnf -y --installroot=\${WORKDIR}/rootfs
--nodocs install \${PACKAGES}

Container project: base images

Container project: registry

Approval mechanism* O A ≈ https:// .cern.ch/harbor/projects/10 Q Search Harbor (III) English ~ ~ **Projects** & Projects acc Project Admin List of allowed ■ Logs images on the Repositories Helm Charts Members Labels Scanner **Controls registry** PUSH COMMAND Y Q BE C Name ▼ Artifacts Pulls Last Modified Time acc/simple_ann_default 7/27/21, 1:55 PM acc/ucap-build 2 8/17/21, 4:38 PM acc/metrics-scraper 16 9/6/21, 2:51 PM C Vulnerability Severity: Critical acc/dashboard 16 acc/debug 16 9/6/2 9/6/2 acc/nginx 106 16 acc/mlp-ci **€** DARK 16 acc/es 9/6/: 100 150 All V2.0 Scanned by: Trivy@v0.16.0 Duration: 11 sec * Details in extra slides Scan completed time: 9/6/21, 2:49 PM



Container project: engine

Podman is our container engine of choice:

Containers run as plain systemd services

1. Declare in the Controls Configuration Database

2. Deploy and run

Container project: engine

Podman is our container engine of choice:

- Containers run as plain systemd services
- Rootless for security and practicality
- Daemonless architecture
- Community-driven project

Current CERN use cases

- Standard way to deploy software (e.g. SourceGraph, Nexus)
- Decoupling software upgrades from operating system upgrades (e.g. WinCC OA 3.16 on EL8 consoles)
- Unified deployment and operational environments (e.g. LHC Injector Chain Timing Sequence Manager)
- Replicate production in local environments (e.g. LHC Orbit Feedback, Controls Middleware Directory Service)

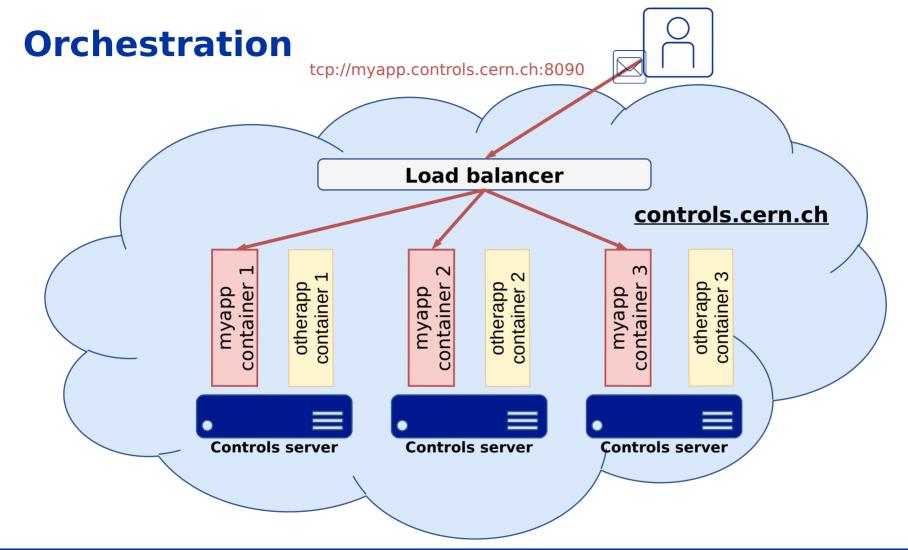
Table of Contents

Technical background

Container availability

Future plans

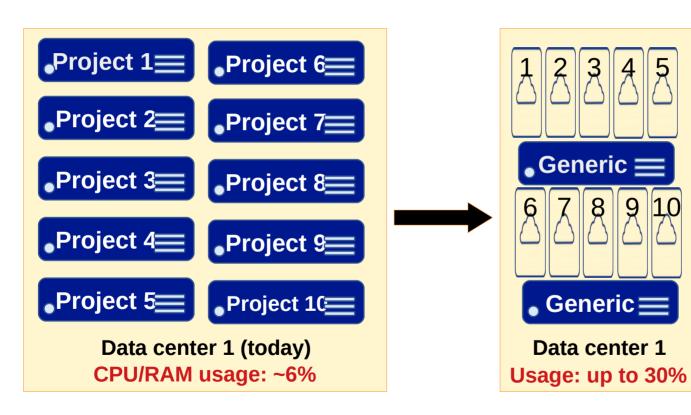
Making sense of containers on a larger scale

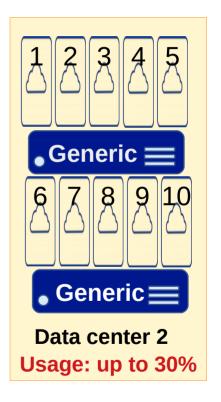

Quick delivery of components was necessary to:

- Address demands for specific use cases
- Channel its use / provide tooling around this emerging technology
- Enforce security rules for container deployment

Questions arising are now:

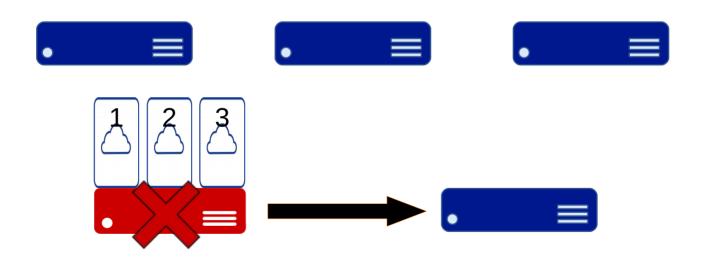
- Should we push for global use of containers? What is the added value for existing projects?
- Does the use of containerization pave the way to container orchestration?





Infrastructure challenges addressed by orchestration

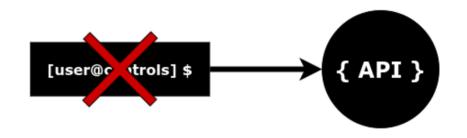
Mitigation of data center failure + improved usage of the bare metal infrastructure



Infrastructure challenges addressed by orchestration

Generic, orchestrated servers

easier lifecycle management and shorter maintenance windows



Infrastructure challenges addressed by orchestration

Moving away from the "Linux shell" interface

- Give access to APIs instead
- More security by design
- Easier for developers
- Some use cases are ready
 - MOBL03 Machine Learning Platform: Deploying and Managing Models in the CERN Control System
 - TUBL01 Distributed Caching at Cloud Scale With Apache Ignite for the C2MON Framework

Is container orchestration a silver bullet?

Concerns and questions:

- Orchestration vs virtualization for monolithic applications
- Added complexity
 - More risks, more human resources
 - For this reason, self-managed Kubernetes was dismissed in 2019
- Orchestrator maintenance

Our next step: try Nomad

To conclude...

Containers offer advantages in Controls environments

 Quick and easy way to provide software, similar development and operational environments, management of software dependencies, ...

Plain containerization is available

21/10/2021

Three bricks: base images, registry, container engine

Should the future be containerized or even orchestrated?

- Would "standard" containerization on a larger scale make sense?
- Is orchestration the right technical solution for providing more flexibility to Controls infrastructures?

Please share your experience!

Thanks for your attention!

