

Machine Learning Platform: Deploying and Managing Models in the CERN Control System

Jean-Baptiste de Martel

10/18/2021 - ICALEPCS 2021

Contents

- Introduction
- Development to production with MLP
- Continuous retraining

Introduction

ML for CERN Accelerator Controls

Model type: Layout/architecture of the neural network – i.e., number of neurons, how they are connected, etc...

784

Model parameters: "Trained weights" - values assigned to the neurons and connections after training

Model: Combination of a model type and model parameters

Source: https://www.youtube.com/watch?v=aircAruvnKk

Jean-Baptiste de Martel | Machine Learning Platform

ML for accelerator controls

• Why ML ?

- Particle accelerators are complex, time-varying, non-linear systems
- Large parameter space with many intercorrelated variables
- Human operators can only process and tune a limited number of parameters at once, act on narrow timescales, and are slow
- Automated systems lack domain knowledge and deductive reasoning
- Most of the control system remains based on traditional methods
- But certain problems are much easier to solve with ML
 - Optimization e.g., trajectory steering at LINAC4
 - Trending and forecasting e.g., magnet field prediction with hysteresis
 - Computer vision e.g., beam profile measurements

Finding a compromise

Volatile world of physicists

- Code needs to run once
- Bleeding edge technology
- Used to own tools and comfort, cloud services
- Maintainability is not the main concern

Reliable world of accelerator controls

- Need to run reliably 24/7/365: need reproducibility, robustness, traceability
- Use highly reliable, battle-tested tools
- Constraints of the accelerator network: no internet access, restricted tooling, security precautions
- Standardize and unify to minimize maintenance

Enabling ML for accelerator controls

MLP aims to bridge the gap between these 2 worlds by providing tooling which:

- helps fulfill the specific needs of the control system
 - reliability
 - traceability
 - security
 - standardization
- stays out of the user's way
 - minimizes impact on model developer's workflow
 - avoids constraining choice of tools
- facilitates model development by hiding infrastructural concerns

Development to production with MLP

Development workflow

Publishing model types		S Model registry	Metadata DB
Physic (</th <th>ticist \$ git tag v2.0.0 VCS, Cl</th> <th>O Spring boot Python p ind</th> <th>DATABASE DATABASE Dackage ex iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</th>	ticist \$ git tag v2.0.0 VCS, Cl	O Spring boot Python p ind	DATABASE DATABASE Dackage ex iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
New Tag		Advantages	
Tag name Create from	v2.0.0 master ~ Existing branch name, tag, or commit SHA	 Access control and types 	traceability for model
Message	Change activation function from sigmoid to ReLU	 Quick & easy, no need to learn new tools, complexity is hidden 	
		Minimal constraints	on use of git

CERN

Usage

Advantages

- Choose parameters name and version
- Use the client library to publish

- All parameters stored centrally and reliably
- Compatibility is fully managed

Usage

- Use the MLP client library to instantiate the model
- Provide model type, parameters name and version

Advantages

- Parameters retrieved and loaded transparently
- Parameter traceability

Continuous retraining

Continuous retraining - motivation

Example: stripper foil degradation

- The stripper foil is an essential component of our linacs
- It degrades over time and is replaced regularly
- Beam characteristics vary
- Machine parameters need to adapt
- -> need to <u>re-train</u> model continuously to keep it up to date

Continuous retraining - implementation

Conclusion

- The number of ML applications for controls is growing exponentially
- We want to help physicists develop models faster and unburden them from infrastructural concerns while minimizing constraints
- We also want to apply software engineering best practices to ensure reliability and maintainability of the control system
- MLP provides a basis to achieve these goals and is now being adopted
- Could not cover everything, simplified a lot please see paper or contact me offline!
 - jean-baptiste.de.martel@cern.ch

