The ELT Control System: recent developments

European Southern Observatory
The ELT

The ELT Control Strategy

Control System Architecture

Local Control Systems

Central Control System

Conclusion

• More on paper and references:
 ➢ RTC and Adaptive Optics, The Minuscule ELT, Common Software Infrastructure
The ELT

- Large segmented telescope
- 5-mirror scheme
- 10000 tons, 25000 sensors, 15000 actuators
- M1 (39M): 800 1.4M segments
- M4 (2.5M): 5300 actuators
- 6 instruments
- Many distributed control loops: from 0.01Hz to kHz.
- Distributed control requiring synchronization to ms.
The ELT Telescope Structure

Main Structure holds the opto-mechanical units

Alt-Az mount points and tracks to compensate for target motion (earth rotation)

Environment: gravity, wind, thermal, atmospheric turbulence, earthquakes

Opto-mechanical units are jointly capable of re-aligning themselves, refocusing, stabilising the image, and compensating for external perturbations

Focal plane (on-sky) and embedded metrology systems measure the state of the telescope and of external perturbations (e.g. atmosphere); control system derives the commands sent to the units
Goal:
- diffraction limitable beam at each of the ELT Nasmyth foci

Challenge:
- keep wavefront within error ~10s of nm with perturbations in the range of mm

Control
- Deformable M4:
 - on-sky loop closed at rates up to 1 kHz.
 - limited stroke (100um)
- Feed forward control during blind phases
 - brings telescope within the acquisition range of on-sky sensors
- Feedback loops based on telescope internal metrology
 - M1 Figure Loop keep deformations within the capture range of M4
- Background stroke management

Control Strategy
The ELT Control System, MOBL01; ICALEPCS 2021
ELT CS architecture drivers

Architecture drivers:

- Subsystems contracted to industry.
- Instruments developed by consortia.
- De-coupling of subsystems
- Flexible at AIV/Commissioning
- Obsolescence management

Foundation's status, June 2021
Some ELT standards

- Communication: Ethernet, EtherCAT, PROFINET, PROFISAFE, UDP/TCP.
- Middleware: OPC/UA, DDS, ZeroMQ.
- Time synchronization: PTP and NTP.
- Runtime platforms:
 - Linux CentOS/Linux RT for WS applications.
 - Beckhoff PLCs (TwinCAT), SIMATIC S7 for LCS software.
- Safety: SIMATIC Safety Advanced, TwinSAFE.
- Languages:
 - C++, Java and Python,
 - Structured Text and Function Block Diagrams for PLC code,
 - MATLAB/Simulink, LabVIEW-G.
- Data serialization: Google Protocol Buffer
- State Machines: SCXML.
- GUIs: **TAURUS**, Qt (C++ and Python) for operators
 LabVIEW or touch panel HMI for Engineering UIs and hardware control panels.
Control System Overview
Local Control Systems

The ELT Control System, MOBL01; ICALEPCS 2021
Central Control System
Local Supervisors
High Level Coordination and Control
TREx and real-time control
Conclusions
Conclusions

- Reqs, architecture, design carried on in the past years.
- Most subsystems (LCSs) contracted out and in production.
- Technical infrastructure and prototypes have been developed.
- We are now moving to serial development of system components (HLCC, LSVs, RTC, AO).
- Requirements for TREx real time components are being collected and design will follow.
- Validation test benches (MELT) are operational
Reqs, architecture, design carried on in the past years.

Most subsystems (LCSs) contracted out and in production.

Technical infrastructure and prototypes have been developed.

We are now moving to serial development of system components (HLCC, LSVs, RTC, AO).

Requirements for TREx real time components are being collected and design will follow.

Validation test benches (MELT) are operational

Scientific First Light is foreseen for end 2027