
The IBEX Script Generator
James King, Jack Harper, Thomas Löhnert, Aaron Long, Dominic Oram, (STFC/RAL/ISIS, Chilton, Didcot, Oxon)

TUPV049



IBEX Scripting

• IBEX is used for beamline control at ISIS
• Users can control experiments with  Python scripts 
• Scripting is error prone 
• Learning to write scripts is a steep learning curve
• Script generator reuses common code
• Users are note required to write code

Script Generator Basic 
Behaviour

• Experiments at ISIS often execute common actions
• Script definitions are Python classes that define these actions
• The script definition defines the parameters an action takes
• The script definition also defines how to run, validate and 

estimate the time for an action
• The execution code is reused, so it can be well tested
• The validation code can be written to avoid common errors



Script Generator Behaviour
• Script definitions are selected from a drop down
• Actions can be inserted, appended, duplicated, copied and pasted and deleted 
• Actions can also be reordered and have their parameter values set

• Actions are validated in real time and 
validity is displayed to the user

• Run time of the actions and script is 
estimated in real time

• Action parameters are set specifically 
for an action

• Global parameters are set for the 
entire script

• For example, a global parameter could 
define a temperature controller to use 
and an action a temperature to set 
using this temperature controller

• The script that is currently being 
edited is tracked and displayed

• A script definition defined help string 
is displayed to the user

• Scripts can be generated for valid tables or queued in the script server
• Generated scripts can be run in the IBEX scripting console
• Script parameters from saved scripts can be reloaded into the table



Architecture
• The script generator needs to be included in the 

IBEX client
• Uses the same tech stack: Java and Eclipse RCP
• Uses the same Model-View-ViewModel design 

pattern as the client. 

• The Java and Python sides talk via Py4J
• Py4J use is run in a CompletableFuture to avoid 

hanging the GUI thread
• A chain of listeners passes the returned data 

back the View for display
• A strategy pattern is used to enable the 

extensibility to add new actions

Quality Assurance
• 2 forms of automated testing: unit and system UI
• JUnit for Java and unittest for Python
• The Squish GUI tester’s BDD tools have been 

leveraged for system UI testing
• Application behaviour is defined using Gherkin
• Gherkin steps are linked to test code
• Regressions and deviations in behaviour have been 

caught prior to release on multiple occasions

• All script generator code is subject to code reviews
• Checkstyle is used to identify programming flaws 

and style inconsistency



Future of The IBEX Script Generator

• Currently, the script generator is only deployed for EMU and MuSR
• The functionality is being expanded to make it useful to other instruments
• Dynamic scripting will enable users to control the execution and values of actions 

whilst the script is running in the script server
• Dry runs will give the users the ability to test run their scripts without affecting 

hardware or data collection
• Different types of actions will be available for use within the same script

• Usability will be 
improved through:

• A UI redesign
• Improving the 

readability of 
generated scripts

• The development 
of a type system, 
which will enable 
us to customise 
the display of 
action parameters

• For example, drop 
down boxes for 
enumerated types


