
A RELIABLE MONITORING AND CONTROL SYSTEM

FOR VACUUM SURFACE TREATMENTS

J. Tagg, E. Bez, M. Himmerlich, A. K. Reascos Portilla, CERN, Switzerland

TUPV039

Project Description Architecture and Implementation

Sequences Conclusions

The objective of the LESS (Laser Engineered 
Surface Structures) project is the commissioning 
of an in-situ laser surface treatment conceived 
to mitigate electron clouds in the Large Hadron 
Collider (LHC) at CERN. Secondary electrons 
are multiplied when they interact with the vacuum 
chamber walls of the accelerator and 
consequently form electron clouds that can 
negatively affect its performance.

The software is based on a custom 
design which favors ‘locality’ and 
emphasizes the use of standard 
debugging tools. Actions are always 
run close to where they triggered.

Data is shared among all running 
processes to give them easier access 
to any useful information they may 
need.

A simple state machine architecture is 
used to run the sequences. One of the 
main roles of a sequence is to control the 
inchworm robot as it alternates clamping 
and movement. The sequence state 
machine encapsulates all knowledge of 
how to perform the sequence and can be 
easily modified to tweak its details and 
logic.

Reliability is ensured through:
• Good practices
• Reliable hardware
• Redundancy
• Safe state on any error that isn’t 

explicitly handled



Project Description

The objective of the LESS (Laser Engineered Surface 
Structures) project is the commissioning of an in-situ laser 
surface treatment conceived to mitigate electron clouds in the 
Large Hadron Collider (LHC) at CERN. Secondary electrons 
are multiplied when they interact with the vacuum chamber 
walls of the accelerator and consequently form electron clouds 
that can negatively affect its performance.
The secondary electron emission of a surface can be reduced 
by surface roughening. 

Main components
• Pulsed laser
• Inchworm robot
• Nitrogen atmosphere
• Environmental readouts
• Extraction vacuum

Interfaces
• RS-232
• Ethernet / Telnet
• Analog and digital IO

Robot inside the beamscreen (longitudinal view) with 
a simulated laser beam.



Architecture and Implementation

Readability Debuggability Prototyping Multiple instances

CVT yes yes yes No

DCAF With experience Not directly Takes planning Yes

QMH Can be With experience Nothing built-in Yes

DQMH Lots of boilerplate 
code

Good testing tools Scripting tools for quick 
creation of functions

Cloneable modules 
share some resources

Actor
Framework

With experience Difficult in LabVIEW real-
time

Slow to deploy Yes

All frameworks impose ideas and structures, which in small 
projects can be constraining. We went with a custom solution 
to optimize the ‘locality’ of the code. The main goal was to 
make it more readable by removing intermediate steps 
between cause and effect, and to make it debuggable using 
LabVIEW’s built-in tools.

The program is structured around the idea of a central, shared data set, 
which is passed to all running processes. While this gives great freedom to 
processes to use any data they need to perform their tasks, care is taken to 
avoid race conditions. This is done by carefully deciding which process writes 
to which data point, and keeping to a single writer wherever possible.
Most processes acquire data only and make it available to other processes.

The program is designed in layers.
The lower layers are hardware abstraction and 
are unaware of the wider program state.
Actions are state-aware snippets of processing that 
the application can run within processes. Actions 
and processes work with the full dataset as input 
and can be nested; they represent the main 
integration layer.

Software layers

Software architecture

Programming frameworks considered



Sequences

The program is able to run different sequences, each one moving the robot in 
a specific way. The purpose is to measure their relative performance by 
analyzing the samples after treatment.

State diagram of the line sequence

Main parameters used for sequences
• Closeness of laser tracks (pitch)
• Speed of treatment
• Speed of adjusting movement
• Length to treat
• Range of internal sled movement
• Radius of beamscreen
• Treatment angle

Clamps

<< Sled >>

Nozzle

Spiral

Line

Longitudinal

Zigzag

Sequences



Conclusions

Reliability is ensured through:
• Good practices: limit writers of data, modularization, simplify where 

possible
• Reliable hardware: NI CompactRIO running NI Linux RT OS
• Redundancy: duplicate important hardware (switches, laser shutter)
• Safe state on any error that isn’t explicitly handled
• GUI locked during sequence to only allow minimal interaction

Delays on hardware integration mean we were not 
able to fully test the system yet. Focus was on 
testing the sequences and the robot movement.

Benefits of the custom architecture
• Readable: when something happens, it happens right there
• Ease of debugging using standard LabVIEW tools
• Access to all data wherever needed
• Very fast to deploy
• Small changes and tweaks can be tested in a very short time

Limits of custom architecture
• Limited complexity: race conditions will appear without stricter modularization 

(manageable on small project, but would need to change if the project grew 
bigger).


