TUPVO33

Distributed transactions in accelerator
controls ensure the consistency of settings

Send the settings.
Open a transaction on Devices reply OK or
all the devices NOK, but settings are
not applied yet.

With transactions

A client who wants to change the settings of
dipoles and RF cavities simultaneously must...

J IF all the requests
succeed, the settings

Send all the settings - are applied.
in parallel requests, e d NOE(V
as fast as possible e

fails, the accelerator

isin a bad state,

Without transactions

Distributed Transactions in CERN's Accelerator Control System

F. Hoguin, S. Deghaye, P. Mantion, J. Lauener, R. Gorbonosov, CERN, Geneva, Switzerland

If all the requests are

OK, commit the
transaction. All the
settings are applied.

If any request fails,
rollback the
transaction. No setting

has been changed.

\(,B\’ Oy . * Errors are detected before any
) o L,
* Any error puts the accelerator in a %) g r;"'ee change is made
bad state \ * Possibility to cancel the transaction
* Vulnerable to network errors and keep the accelerator in a good
* Dependent on the client’s machine state
and network connection . + Commit is done using the timing

Og 0 <0 : system, independently of the client

aoa
1nnmm;
%Lfln.
ICALEPCS 2021
The timing system broadcasts commit or

rollback events for simultaneous application

system

* Transaction commit relies on the timing
system instead of the client

* Commit event is sent simultaneously to
all the devices, and can be used for
synchronisation

* Immune to network latency, collisions,
or saturation

Accelerator

Real-time frameworks support transactions

transparently

Transparent mode committed. Users of the framework don’t
‘ Client ‘ FESA Server | ‘ User code H Timing “ Hardware | need to change a single line of code.
open ransacton wih 123
k% """"""""""" User code checks individual settings validity.
st setimpvae . Errors are reported to the client before any
Ghect sating vasaty change is applied.
Setting ok *
[FR— In transparent mode, the transaction test
L ——— does nothing and is always successful.
[Test transaction 123
R ol S— . 2
¥ ot fr bt 125, | User code applies the changes in the same
o way it would without a transaction.
Commt ransacton 123
[Toop JiFer sach seting In transacion 23]
setingcharges
L Apply new setting

I
‘ Client ‘ l FESA Server | ‘ User code “ Timing “ Hardware |

In transparent mode, the application of new
settings is delayed until the transaction is

With the 2-phase commit, double buffering
on the hardware becomes possible

In advanced mode, users can take
advantage of hardware capabilities, such as

Advanced mode

‘ FESA Server ‘ | User code ‘ | Hardware H Timing |

double buffering, to ensure the hardware is
ready for the commit event.

{

0133 User code checks individual settings validity.
Chack validity .
p— } —| Errors are reported to the client before any
change is applied.

User code checks new settings, and if the
hardware supports double buffering, loads
—{ them on a free buffer. If a hardware error
occurs, it is reported, and the transaction
can be rolled back.

Test transaction 123
Mew seftings 1o be appied later |

‘Sana commi avert for rarsaction 123

o

Commit irnsaction 123

Coment transaction 123
pew now -
Client ‘ FESA Server ‘ | User code ‘

When the timing system broadcasts a
commit event, the user code tells the
hardware to swap the buffers.

| Hardware || Timing |

Distributed transactions in accelerator
controls ensure the consistency of settings

A client who wants to change the settings of

dipoles and RF cavities simultaneously must... If all the requests are

OK, commit the

If all the requests
succeed, the settings

transaction. All the
settings are applied.

Send the settings.

Devices reply OK or
NOK, but settings are
not applied yet.

Open a transaction on

all the devices

If any request fails,
rollback the
transaction. No setting

With transactions s

Send all the settings e B are applied.
in parallel requests, g NOFI)<y
as fast as possible If any of the request

fails, the accelerator
is in a bad state.

Without transactions

q\c}’a\’ 0@0. * Errors are detected before any
« Any error puts the accelerator in a Ol é}"‘@e change is made
bad state / \ * Possibility to cancel the transaction
* Vulnerable to network errors and keep the accelerator in a good
* Dependent on the client’s machine state

and network connection e Commit is done using the timing

O:Q,%V% MD‘ system, independently of the client
7 X2

The timing system broadcasts commit or
rollback events for simultaneous application

Commit transaction 123 Timi ng

system

* Transaction commit relies on the timing
system instead of the client

 Commit event is sent simultaneously to
all the devices, and can be used for
synchronisation

* Immune to network latency, collisions, % g\N\
or saturation SN

Accelerator

Real-time frameworks support transactions
t ra n S p a re nt ‘ y In transparent mode, the application of new

settings is delayed until the transaction is

Transparent mode committed. Users of the framework don’t
need to change a single line of code.

Client FESA Server User code Timing Hardware
Open transaction with id 123 >
|:opj ““““ — User code checks individual settings validity.
et settingivatve, 15=123) s 1 Errors are reported to the client before any
' . .
e setng vatary | — | change is applied.
¢ Setting ok
Rl PR In transparent mode, the transaction test
A — — | does nothing and is always successful
(Test transaction 123 — g Y :
OK . .
R — User code applies the changes in the same
= commit evel 'or transaction } . . .
PR N I R way it would without a transaction.
{ Commit transaction 123
loop JI[For each setting In transaction 123]
Setting changed /"
Apply new setting ’
- ok_____1_

Client FESA Server User code Timing Hardware

With the 2-phase commit, doub
on the hardware becomes possi

Advanced mode

e buffering
0le

In advanced mode, users can take
advantage of hardware capabilities, such as

double buffering, to ensure the hardware is
ready for the commit event.

User code checks individual settings validity.
Errors are reported to the client before any
change is applied.

User code checks new settings, and if the
hardware supports double buffering, loads
them on a free buffer. If a hardware error
occurs, it is reported, and the transaction
can be rolled back.

Client FESA Server User code Hardware Timing
Open transaction with id 123 |
L4
OK
‘_ ________________________
loop J
Set setting(value, id=123)
Check setting validity
Setting ok
Save setting in transaction buffer @
OK
‘_ ________________________
Test transaction 123 A
|4
Test transaction 123 ’ l
New settings to be applied later y |
' al
VRS S —— J
OK
‘_ ________________________
Send commit event for transaction 123 Al
P
OK
‘_ __
4 Commit transaction 123
Commit transaction 123 ’
Apply new settings now ’ J‘
‘_________“i': _________
Client FESA Server User code Hardware Timing

When the timing system broadcasts a
commit event, the user code tells the
hardware to swap the buffers.

