
Distributed Transactions in CERN's Accelerator Control System
F. Hoguin, S. Deghaye, P. Mantion, J. Lauener, R. Gorbonosov, CERN, Geneva, Switzerland

TUPV033



Distributed transactions in accelerator 
controls ensure the consistency of settings

Open a transaction on 
all the devices

Send the settings. 
Devices reply OK or 

NOK, but settings are 
not applied yet.

If all the requests are 
OK, commit the 

transaction. All the 
settings are applied.

If any request fails, 
rollback the 

transaction. No setting 
has been changed.

Send all the settings 
in parallel requests, 
as fast as possible

Devices reply OK or 
NOK

If all the requests 
succeed, the settings 

are applied.

If any of the request 
fails, the accelerator 

is in a bad state.

Without transactions With transactions

A client who wants to change the settings of 
dipoles and RF cavities simultaneously must…

Accelerator

• Any error puts the accelerator in a 
bad state 

• Vulnerable to network errors
• Dependent on the client’s machine 

and network connection

• Errors are detected before any
change is made

• Possibility to cancel the transaction 
and keep the accelerator in a good 
state

• Commit is done using the timing
system, independently of the client



The timing system broadcasts commit or 
rollback events for simultaneous application

Accelerator

Timing 
system

Commit transaction 123

• Transaction commit relies on the timing 
system instead of the client

• Commit event is sent simultaneously to 
all the devices, and can be used for 
synchronisation

• Immune to network latency, collisions, 
or saturation



Real-time frameworks support transactions 
transparently

User code checks individual settings validity.
Errors are reported to the client before any
change is applied.

In transparent mode, the transaction test 
does nothing and is always successful.

User code applies the changes in the same 
way it would without a transaction.

In transparent mode, the application of new 
settings is delayed until the transaction is 
committed. Users of the framework don’t 

need to change a single line of code. 



With the 2-phase commit, double buffering 
on the hardware becomes possible

User code checks individual settings validity.
Errors are reported to the client before any
change is applied.

User code checks new settings, and if the 
hardware supports double buffering, loads 
them on a free buffer. If a hardware error
occurs, it is reported, and the transaction 
can be rolled back.

When the timing system broadcasts a 
commit event, the user code tells the 
hardware to swap the buffers.

In advanced mode, users can take 
advantage of hardware capabilities, such as 
double buffering, to ensure the hardware is 

ready for the commit event. 


