

 $\sim 1.5 m^3$

GE1/1 already installed ,full installation of the GEM station foreseen for 2027

The GEM Gas Monitoring system:

using a gaseous detector as a gas detector for CMS Triple-GEM safe operation

A. Braghieri⁽¹⁾, **Davide Fiorina**⁽¹⁾,P.Vitulo⁽¹⁾ On behalf of the CMS collaboration Università & INFN Pavia

The GEM Gas Monitoring system:

using a gaseous detector as a gas detector for CMS Triple-GEM safe operation

ICALEPCS 2021

A. Braghieri⁽¹⁾, **Davide Fiorina**⁽¹⁾,P.Vitulo⁽¹⁾ On behalf of the CMS collaboration Università & INFN Pavia

1.CMS muon upgrade for HL-LHC

GE1/1 - GE2/1 - ME0

Triple-GEM detectors stations will be implemented in the CMS muon spectrometer

Full GEM system volume

 $\sim 1.5 \, m^3$

GE1/1 already installed ,full installation of the GEM station foreseen for 2027

2. GEM gas quality impact

Maintaining the gas mixture at its nominal concentration is fundamental for the detector operation

- Less CO₂ -> More discharges
- More CO₂ -> Less efficiency

1% more of Argon (@ 70% Ar) → 20% more gain

$$G(\%_{CO_2}) = Ae^{-B\%_{CO_2}}$$

The ratio between Ar and CO₂ needs to remain constant!

Nominal gas mixture: $Ar/CO_2 70/30$

The GEM Gas Monitoring system:

using a gaseous detector as a gas detector for CMS Triple-GEM safe operation

M **ICALEPCS 2021**

A. Braghieri⁽¹⁾, **Davide Fiorina**⁽¹⁾,P.Vitulo⁽¹⁾ On behalf of the CMS collaboration Università & INFN Pavia

Knowing the exact relation between effective gas gain and gas concentration, it is possible to get the Ar/CO2 ratio of the supplied gas!

Use a gaseous detector as a gas detector!

HARDWARE:

- · Detector, HV and picoammeter for gain measurement
- Mass Flow Controller to regulate the gas flow
 - Pressure and Temperature sensor

SOFTWARE:

- · Local control and analysis
- WUI and GUI for remote access and operation
- Alert to experts and interface with the **CMS Detector Control System**

4. Gain Fluctuations Correction

Fluctuation in the GEM gain may distort the gas conentration measure 2 main sources of fluctuation in our system

Gas flow may change the concentration of impurities inside the gas volume.

Oxygen and H20 which are electronegative, have negative impact on

Maintaining a constant and steady (≥1 vol/h) flux is necessary for remove this fluctuation

Gas flux is maintaineed constant by the Mass Flow Controller

Electron multiplication strongly depends on gas density hence on temperature and pressure

$$G(T,P) = Ae^{BV\left(\frac{P_0}{P}\right)^a\left(\frac{T}{T_0}\right)^b}$$

- · A and B parametrs from the gain-voltage charateristic
- · V is the working voltege

Fitting with the experimental formula a set of gain points, the correcting parameters (a, b) are found

The GEM Gas Monitoring system:

using a gaseous detector as a gas detector for CMS Triple-GEM safe operation

A. Braghieri⁽¹⁾, **Davide Fiorina**⁽¹⁾, P.Vitulo⁽¹⁾ On behalf of the CMS collaboration Università & INFN Pavia

A corrected gain measurement is performed every 30s

5. Analysis Algorithm and Benchmarks

The last 10 gain points are used to detect if the gas concetration has changed:

- Mean (m) and standard deviation (s) is computed
- The variable t is calcualted using mean (μ) and standard deviation (σ) of the reference corrected dataset

If |t|>t* a warning is generated and actions may be taken to solve the issue

Random variables helps to identify the probability to have a warning just because of random fluctuation

We expect to sample $\sim 10^6$ gain points per year

Using a t*>1.2 suppres the expected fake warnings to <1/vear

We collected data during the spontaneous depletion of an Argon bottle (only CO₂) remaining)

Running the algorithm on this dataset is the perfect benchmark for the algorithm!

 $\overline{G(warning)}$

With a threshold

we are able to

corresponding to a

variation < 1%

t*=2

detect

<7%

CO₂/Ar

