TUPV016

DESIGN AND DEVELOPMENT OF THE NEW DIAGNOSTICS CONTROL SYSTEM FOR THE SPES PROJECT AT INFN-LNL

Giovanni Savarese, Giovanni Arena, Damiano Bortolato, Fabio Gelain, Davide Marcato, Valentina Martinelli, Enrico Munaron, Marco Roetta – LNL/INFN, Legnaro, Italy

Fig.9: Emittance meter

commands

control

FSM parameters control

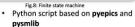
Scuubex parameters

Emittance graphs

with start and and stop

Fig.9: Emittance meter page

Signal moving average


 $I_{FC} = \frac{X_{FC,bit}}{C_{FC}} \cdot S_{FC} + O_{FC}[A]$

Current values

retrieval

standardization

INFN

- Read and write access to the EPICS IOC PVs
- Temporized motion along the X and Y axis to scan the beam emittance Usage of the Scubeex-Ghostbuster

uu

ICALEPCS 2021

Giovanni Savarese, Giovanni Arena, Damiano Bortolato, Fabio Gelain, Davide Marcato, Valentina Martinelli, Enrico Munaron, Marco Roetta – LNL/INFN, Legnaro, Italy

- Possible mounted instruments: Beam
 Profilers, Faraday Cups and Collimators
- Analogic boards converting and multiplexing BP current signals to voltage ones

- Digital boards digitizing Beam Profilers and Faraday Cups signals
- Forward clock and gain signals to the analog boards
- Host the VxWorks station with the Legacy EPICS IOC
- CSS Based
- Split Beam Profiler horizontal and vertical profiles
- Faraday Cup current trend
- Adaptable graphical full-scale
- Motion control

Fig.2: Rack VME

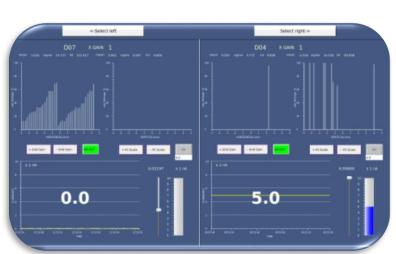


Fig.1: Diagnostic box

Fig.3: Legacy Diagnostic Graphical User Interface

Giovanni Savarese, Giovanni Arena, Damiano Bortolato, Fabio Gelain, Davide Marcato, Valentina Martinelli, Enrico Munaron, Marco Roetta – LNL/INFN, Legnaro, Italy

Fig.4: Grids Pre-Amplifier box

- 1 box replaces 2 analog boards.
- Increased performances.
- Backward compatibility.

MG Dipoles	C DERTRIA	DOBX ESA	600.00 🖉 🤇) ocaron 📒	DCBX 01A	DERKIDA 🚺
MG Steerers	SIC1 Open Cent		Center	0.000 3.162217 0.00	8.000	3.162E17 0.000E0
MG Triplets	Rood 0.000 mm 100.000					
ES Steerers	ENABLED		EHABLED			
ES Triplets	Auto -5.00,5.00 -5.00, Auto 100.00,100.00 100.00	5.00 Aut+ -100.00,-10	.00 -100.00, -100.00			
Diagnostics	O sites		O 184			
Silts	205 Mat 3005					
ittance meters	171.36	1000 F (2000) F (2000)		ull'Suite difficilitie MP10 Noise		Mase States
	133		2.	176-5A 6080A 6389A 🖓 8P		IN OUT OUT
Calibration						Suppression Voltage Current
	pund 40			54-0		200.00 V 10.00 microA
	P			1.21	-11	Di O
	•			"mmm	mann	
	-12			- man man man		

Fig.6: Legacy Diagnostic Graphical User Interface

- It replaces the Rack VME
 Can control up to 4 Beam Profilers and 4 Faraday Cups
 - Backward compatibility
 - Can Host an OS
 - FPGA
 - Generates the clock signal

Fig.5: Custom Controller

- CSS Based
- Beam Profiler horizontal and vertical profiles: Split and Unified mode

- Faraday Cup current trend
- Adaptable graphical and hardware full-scale
- Suppression control
- Motion control
- Collimators position control

Giovanni Savarese, Giovanni Arena, Damiano Bortolato, Fabio Gelain, Davide Marcato, Valentina Martinelli, Enrico Munaron, Marco Roetta – LNL/INFN, Legnaro, Italy

EPICS IOC main tasks:

- Use IPBUS protocol and a custom EPICS module to communicate with the controller FPGA
- From raw values calculate the real current values

$$I_{BP,i} = \left(\frac{X_{BP,i} \cdot S_{BP}}{G_{BP}} + O_{BP}\right) \cdot \frac{S_{PA,i}}{G_{PA,i}} + O_{PA,i}[A]$$
$$I_{FC} = \frac{X_{FC,bit}}{G_{FC}} \cdot S_{FC} + O_{FC}[A]$$

Current values retrieval

- Users can detect broken wires and select the correction to apply:
 - Linear correction
 - Polynomial correction
- Remove noise
- Signal moving average

Signal cleaning

- Communication with multiple IOCs devoted to motion control
- Motion control standardization
- Roto-translation system to calculate instruments position in the beam line reference system
- Collimators control standardization

Handling control

Giovanni Savarese, Giovanni Arena, Damiano Bortolato, Fabio Gelain, Davide Marcato, Valentina Martinelli, Enrico Munaron, Marco Roetta – LNL/INFN, Legnaro, Italy

- 2 identical slit-grid type instrument that scan the beam in 2 orthogonal planes
- For each grid it requires 2 channels of the pre-amplifier box and 2 channels of the new controller

Fig.8: Finite state machine

- Python script based on pyepics and pysmlib
- Read and write access to the EPICS IOC PVs
- Temporized motion along the X and Y axis to scan the beam emittance
- Usage of the Scubeex-Ghostbuster method to detect emittance

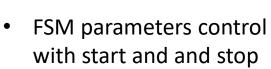


Fig.9: Emittance meter

- with start and and stop commands
- Scuubex parameters control
- Emittance graphs

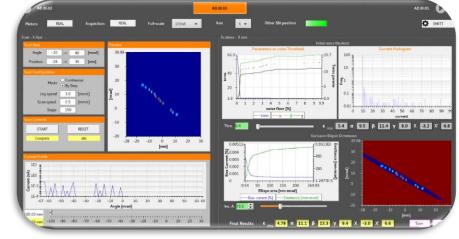


Fig.9: Emittance meter page