
BACKEND EVENT BUILDER SOFTWARE DESIGN FOR INO MINI-ICAL SYSTEM
Mahesh Punna1, Narshima Ayyagiri1, Janhavi Avadhoot Deshpande1, Preetha Nair1 , Padmini Sridharan1,Shikha Srivastava1, 

Satyanarayana Bheesette2, Yuvaraj Elangovan2, Gobinda Majumder2, Nagaraj Panyam2

1BARC, Mumbai, India 2 TIFR, Mumbai, India

TUPV013

Mini-ICAL System Software Architecture

Planned main-ICAL System

Objective

 Study atmospheric neutrinos

 Understanding the Engineering 
Issues in constructing main 
ICAL

 85 ton Iron Calorimeter (ICAL)

 20 Resistive Plate Chamber 
(RPC)

 Built at Inter Institutional 
Centre for High Energy Physics 
(IICHEP), Madurai

 Scaled down version of ICAL

Design Basis

 Data acquisition

 Event collation

 Local data archival

 Data pushing to remote consoles

 Scalability

 Performance

 Low latency in overall event 
acquisition pipeline

 Loose coupling

Test Results on 1Gbps link

System Max Throughput

Conclusion:

 Software developed with 
scalability concern

 Async IO based data 
acquisition, lockless data 
structure for event building, 
High performance NoSQL Db 
can help to scale the software 
to E-ICAL and main-ICAL

a. Introduction b. Software Design

c. Core Modules d. Conclusion



 RPC DAQs 

 Trigger System 

 Backend 
system

 Magnet 
System 

 Gas System 

 LV/HV System

Fig. System Overview

 The Indian-based Neutrino Observatory (INO) collaboration has
proposed to build a 50 KT magnetized Iron Calorimeter (ICAL) detector
to study atmospheric neutrinos.

 The detector will look for muon neutrino induced charged current
interactions using magnetized iron as the target mass and around
28,800 Resistive Plate Chambers (RPCs) as sensitive detector elements

 The mini-Iron Calorimeter (mini-ICAL) detector, a proto-type of the ICAL
detector with 20 RPCs has been set up at the Inter Institutional Centre
for High Energy Physics’ (IICHEP), Madurai

 Atmospheric Neutrinos interact with the iron plates along its line of
travel, producing charged muon particles, thus triggering events in
several RPCs along its path. Orthogonal strip channels (X&Y) on RPCs
pick up the charged particles.

a. Introduction

Fig. 50kt ICAL Layout

Fig. RPC Detector



b. Software Design

Fig. Software Architecture

Fig. Back end Data Acquisition 
System

 The BDAQ system as shown in Fig comprises of several subsystems
that are intended to acquire event data and monitor data from the
RPC-DAQs. The scope of the poster presentation is limited to the
development of Event Builder module

Event Builder: Design Basis

 Event data acquisition from Data Concentrator;

 Monitoring of data from RPC DAQs;

 Event Collation from the RPC event data;

 Local data archival in the selected data format;

 Pushing the collated event data to remote consoles;

 Online muon track visualization



 Data acquisition: Data acquisition provides high performance, catering
to the system data throughput requirements. The module is optimized
to eliminate any possible memory allocation overheads.

 Event Building: Event building algorithm is crucial part of the software.
Event building module collates the complete event from out of order
RPC data. The module design implements the necessary concurrency
control mechanism to handle multi-threaded data acquisition.

 Backend data store: The collated event is processed by back end store,
archiving the data locally. Data storage module write through-put
should satisfy required system throughput, otherwise it would create
back pressure in acquisition pipeline

 Server push: Server data push module publishes the data to the
interested subscriber nodes like data quality monitor consoles and data
visualization consoles

Data Acquisition:

 State full TCP async Server

 Reusable
SocketAsyncEventArgs and
Buffer Manager

 Event driven message passing

 F# Async workflow

 Succinct

 Expressivity

Event Building:

 Out of order individual RPC events are collated to form the complete
event.

 Provision for accommodating the delayed events if any

 Collated events propagation to the event processor module is serialized
based on the event number

Backend data store:

 Data Storage schemes

 Binary Serialization

 XML

 Google ProtoBuf

 CERN ROOT Framework

 ROOT has been used for event
data archiving in mini-ICAL

 The main reason for choosing
ROOT as a backend is its edge in
analysis and visualization features

Server data push:

 There are other remote consoles that
require the built events for track
visualization and data quality
monitoring.

 The server proactively pushes the data
to the interested nodes without clients
polling for the data

 Allows remote console implementation
technology agnostic; browser based,
web applications, desktop application
or mobile application

Fig. Server Push Module

Circular Ring Buffer:

 Lockless concurrent data structure
based on LMAX disruptor pattern

 Event Collation without using locks

 Pre-Allocated Buffer and Reusable
Event Objects

c. Event Builder: Core Modules

Fig. Ring Buffer for event building



d. Conclusion

Testing:

 The test setup consists of multiple Data Concentrator (DC)
simulator clients sending data to EB server on 1 Gbps Ethernet link.
It was observed binary data and BerkeleyDB write throughput was
considerably better than ROOT.

 With the designed ROOT TTree structure, the write speed
observed was around 8MBps due to the write overheads (file meta
data). With mini-ICAL, the maximum throughput requirement is
around 3MBps.

 However, due to efficient columnar data access and data
visualization, ROOT has been used for data archiving

Installation:

 The software was installed at IICHEP, Madurai for mini-ICAL. It has
been recording data since 2017.

Conclusion:

 The modules have been developed with scalability as design
concern. Asynchronous IO based data acquisition module is scalable
with the increasing the number of connections. Disruptor algorithm
based event buffer provides lock-less data structure for event
building. The optimized data structure can be scaled to work for E-
ICAL by tuning the buffer parameters.

 Non-blocking multi-threaded networking and event building
module has been tested up-to 90MBps on 1Giga bit Ethernet
network. The required network throughput (200MBps for E-ICAL)
can be achieved by upgrading the hardware resources (like 10 Giga
bit network and SSD drives). For improving the data write speeds,
multi-threaded file writing, multi-level data writing and high
performance NoSQL databases like BerkeleyDB will be explored.

Fig. Performance

Fig. BerkelyDB vs ROOT write throughput


