
Reusable Real-Time Software Components
for the SPS Low Level RF Control System

 
M. Suminski*, K. Adrianek, B. Bielawski, A. C. Butterworth, J. Egli, G. Hagmann,

P. Kuzmanovic, S. Novel Gonzalez, A. Rey, A. Spierer, CERN, Geneva, Switzerland

THPV033



Introduction
In 2021 the Super Proton Synchrotron 
has been recommissioned after a 
complete renovation of its Low Level RF 
system (LLRF). The new system has 
largely moved to digital signal 
processing, implemented as a set of 
functional blocks (IP cores) in Field 
Programmable Gate Arrays (FPGAs) with 
associated software to control them. 
Some of these IP cores provide generic 
functionalities such as timing, function 
generation and signal acquisition, and 
are reused in several components, with a 
potential application in other 
accelerators.

The update has brought many benefits, one 
of them being increased hardware density: 
what used to take an entire crate full of VME 
modules is now done by one or two 
microTCA cards. It has also affected the 
architecture of the LLRF control system: 
from the former approach of a single VME 
card performing a single function (with its 
own driver, user-space library and 
application), to fitting multiple IP cores with 
different functionalities in the same board.

In order to match the requirements of the 
new IP/component model, a new solution 
for memory map management had to be 
defined.



Workflow

Card top level map
Memory map A
Memory map B
Memory map C

PCI-e interface &
address decoder

Linux driver (EDGE)

C library
(libedge)

C++
library

(A)

C++
library

(B)

C++
library

(C)

IP core
(A)

IP core
(B)

IP core
(C)

Application
(A)

Fi
rm

w
ar

e
So

ft
w

ar
e

Application
(B)

Application
(C)

4. REUSE

1. DEFINE

3. DEVELOP

2a. GENERATE

2b. GENERATE

● Step 1: Card interface description is composed from 
component memory maps.

● Step 2: Memory maps are used to generate firmware 
templates for the FPGA (component code and address 
decoder), a Linux driver for the card and C++ libraries 
for each component.

● Step 3: Real-time application is coded by a software 
developer).

● Step 4: Each component might be reused in other 
cards, including its firmware, C++ library and real-time 
application. Address decoder and Linux driver must be 
generated for the new card.



Version validation

PCI-e interface &
address decoder

Linux driver 
(EDGE)

C library
(libedge)

C++
library

IP core

Application

Fi
rm

w
ar

e
So

ft
w

ar
e

1. Compare driver version 
with a register in the 
standard card header

2. Compare checksum stored 
in the driver with memory 
map file checksum

3. Validate version in a 
register of the standard IP 
core header

Components tend to change, but it is 
important to keep all layers compatible. 
Without it, it is very likely that the 
component will misbehave in an 
unpredictable way.

To prevent such problems, there are multiple 
checks to assure compatibility between 
different layers of a component stack. When 
at least one of the checks fails, the software 
will not start and indicate an incompatibility.



Results
● The concept has been successfully validated during the SPS LLRF 

renovation.
● Multiple components have been designed and reused in new 

Cavity Controller and Beam Control microTCA cards. No changes 
in the software or firmware were required to reuse the same IP on 
a different board.

● The new components can be ported to platforms other than 
microTCA.

 The new IP model improves the firmware and software 
development process by making it more decoupled from 
specialized hardware.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

